第一章 矩阵 1
1.1 矩阵及其运算 1
1.1.1 线性方程组和矩阵的概念 1
1.1.2 矩阵的基本运算及性质 3
1.1.3 逆矩阵 9
1.2 初等变换与初等矩阵 10
1.2.1 初等变换 10
1.2.2 初等矩阵 11
1.2.3 初等变换求逆矩阵 14
1.3 行列式 15
1.3.1 行列式的概念 16
1.3.2 行列式的性质 18
1.3.3 行列式的计算 23
1.3.4 行列式的应用 25
1.4 数学建模实例 31
习题一 33
第二章 向量与线性方程组 38
2.1 向量及其运算 38
2.2 向量的线性关系 40
2.3 向量组与矩阵的秩 43
2.4 齐次线性方程组 50
2.5 非齐次线性方程组 56
2.6 数学建模实例 59
习题二 63
第三章 矩阵的特征值与特征向量 67
3.1 方阵的特征值与特征向量 67
3.1.1 特征值与特征向量的概念 67
3.1.2 特征值与特征向量的性质 70
3.2 矩阵的对角化 72
3.2.1 相似矩阵及其性质 73
3.2.2 矩阵的对角化 73
3.3 数学建模实例 77
习题三 80
第四章 向量的内积与二次型 84
4.1 向量的内积 84
4.1.1 向量的内积与模 84
4.1.2 两个向量的夹角与距离 86
4.2 正交向量组与正交矩阵 87
4.2.1 正交向量组 87
4.2.2 正交矩阵 90
4.3 实对称矩阵 92
4.4 二次型 96
4.4.1 二次型及其矩阵表示 96
4.4.2 二次型的标准形 98
4.4.3 正定二次型 102
4.5 数学建模实例 104
习题四 106
第五章 线性空间与线性变换 111
5.1 线性空间的概念与性质 111
5.1.1 线性空间的概念 111
5.1.2 线性空间的性质 112
5.2 基、维数与坐标 113
5.2.1 有限维线性空间的基与向量的坐标 113
5.2.2 基变换与坐标变换 113
5.3 线性变换 115
5.3.1 线性变换的概念与性质 115
5.3.2 线性变换的矩阵表示 117
习题五 119
第六章 Matlab软件的应用 122
6.1 Matlab软件简介 122
6.1.1 Matlab的命令窗口 122
6.1.2 Matlab的基本操作 124
6.1.3 矩阵的输入方法 125
6.1.4 矩阵的基本运算 128
6.2 Matlab在矩阵和线性方程组中的应用 129
6.2.1 Matlab在矩阵中的应用 129
6.2.2 Matlab在线性方程组中的应用 130
6.3 Matlab在特征值、特征向量和二次型中的应用 134
6.3.1 Matlab在特征值和特征向量中的应用 134
6.3.2 Matlab在二次型中的应用 135
习题六 136
习题答案与提示 139
实验报告 153
参考文献 155