《数学分析 中》PDF下载

  • 购买积分:12 如何计算积分?
  • 作  者:东三省函授教材数学分析协编组编
  • 出 版 社:长春:吉林人民出版社
  • 出版年份:1983
  • ISBN:13091·127
  • 页数:342 页
图书介绍:

目录 1

第七章不定积分 1

§7.1不定积分的概念与性质 1

§7.2基本积分表 6

§7.3分部积分法 10

§7.4换元积分法 17

§7.5有理函数的积分 41

§7.6简单无理函数的积分 59

§7.7三角函数有理式的积分 71

习题 77

第八章定积分 81

§8.1定积分的概念 81

§8.2定积分的性质 91

§8.3微积分学基本定理 99

§8.4定积分的分部积分法和换元积分法 104

习题 112

第九章.定积分的应用 116

§9.1定积分在几何上的应用 116

§9.2定积分在物理上的应用 134

习题 142

第十章实数基本定理·连续函数性质 144

证明·函数可积性 144

§10.1实数基本定理 144

§10.2闭区间上连续函数性质的证明 154

§10.3函数的可积性 165

习题 179

第十一章数项级数 180

§11.1无穷级数的基本概念 180

§11.2基本性质与收敛准则 193

§11.3正项级数 200

§11.4变号级数 217

习题 229

第十二章函数项级数 232

§12.1一般概念 232

§12.2一致收敛性 236

§12.3和函数的分析性质 248

习题 256

第十三章幂级数 258

§13.1幂级数的收敛问题 258

§13.2幂级数的性质 266

§13.3函数的幂级数展开 271

§13.4幂级数在近似计算中的应用 289

§13.5复数项幂级数·尤拉公式 294

习题 297

§14.1周期函数的傅氏级数 299

第十四章傅里叶级数 299

§14.2傅氏级数的收敛性 311

§14.3正弦展开与余弦展开 316

§14.4以2l为周期的函数展开 322

§14.5傅氏级数的复数形式 327

习题 332

习题答案 333

第七章 333

第八章 337

第九章 338

第十章 339

第十一章 339

第十二章 340

第十三章 340

第十四章 342