《功能薄膜与功能材料 新概念与新技术》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:时东陆主编
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2002
  • ISBN:7302059039
  • 页数:440 页
图书介绍:

1 Membrane Thin Film Preparation and Applications&Naotsugu Itoh 1

1.1 Introduction 1

1.1.1 General Aspects 1

1.1.2 Roles of Membrane 1

1.2 Preparation of Ceramic Membranes 4

1.2.1 Sol-Gel Process for Meso-and Micro-porous Membranes 4

1.2.2 Solid-State Synthesis for Mixed Conductor 6

1.2.3 Hydrothermal Process for Zeolite Membrane 9

1.2.4 Anodizing Process for Porous Membrane with Straight Pores 11

1.3 Preparation of Metal Membranes 14

1.3.1 Electroless Plating 15

1.3.2 Electroplating 17

1.3.3 CVD Process 17

1.3.4 Sputtering 19

1.3.5 Rapid Quenching 22

1.4 Applications to Separations and Reactions 25

1.4.1 Microfiltrations and Ultrafiltrations 26

1.4.2 Gas Separations 28

1.4.2.1 Knudsen Regime 28

1.4.2.2 Surface Diffusion Regime 29

1.4.2.3 Capillary Condensation Regime 30

1.4.2.4 Activated Diffusion Regime 31

1.4.2.5 Molecular Sieving Regime 31

1.4.2.6 Dissociative Solution and Diffusion Regime 34

1.4.2.7 Ionic Conduction Regime 39

1.4.2.8 Mixed Ionic Conduction Regime 42

1.4.3 Membrane Reactors 44

1.4.3.1 Catalytic Membrane Reactor 44

1.4.3.2 Membrane Reactor without Catalyst 45

1.4.3.3 Catalyst-packed Membrane Reactor 46

1.4.4 Reaction Coupling in Membrane Reactors 48

1.4.5 Fuel Cells 49

1.5 Summary 49

References 50

2 Sol-Gel Thin Films Synthesis and Properties of Sorbents and Catalysts&Y.S.Lin 53

2.1 Introduction 53

2.1.1 Catalysts and Adsorbents 53

2.1.2 Sol-Gel Process 55

2.2 Sol-Gel Derived Materials for Adsorbents and Catalysts 58

2.2.1 Crystalline Materials 58

2.2.2 Noncrystalline Materials 61

2.3 Sol-Gel Granulation Process 65

2.3.1 Granulation Processes 65

2.3.2 Sol-Gel Preparation of Alumina Granular Particles 67

2.3.3 Physical Properties 70

2.4 Sol-Gel-Derived Granular Adsorbents/Catalysts 74

2.4.1 Synthesis of Adsorbents/Catalysts 74

2.4.2 Sorption Properties 78

2.5 Conclusions 82

References 83

3 Ferroelectric Thin Films and Applications&Cuozhong Cao 86

3.1 Introduction 86

3.2 Charge Displacement and Spontaneous Polarization 87

3.3 Hysteresis 91

3.4 The Curie Point and the Phase Transition 94

3.5 Ferroelectric Thin Films for DRAM and NvRAM 97

3.6 Deposition of Ferroelectric Thin Films 103

3.7 Summary 109

References 110

4 Metalorganic Chemical Vapor Deposition of Ferroelectric Thin Films&RenXu 114

4.1 Overview of Precursor Compounds 114

4.1.1 Background 114

4.1.2 Precursor Preparations 116

4.1.3 Recent Advances 117

4.1.4 Ultimate Role of Precursor Compound 122

4.2 Theoretical Possibility of Autostoichiometric Vapor Deposition 122

4.2.1 Stoichiometry of MOCVD 122

4.2.2 Autostoichiometric Vapor Deposition 125

4.2.3 Examples of Precursors 125

4.2.4 Autostoichiometric Reactions 126

4.2.5 Deposition Apparatus 128

4.2.6 Mass Flow and Rate Analysis 129

4.2.7 Stoichiometry Factor 130

4.3 Stoichiometry of Vaporization Processes 132

4.3.1 Background 132

4.3.2 Physical Chemistry of Evaporation Processes 134

4.3.3 Experimental Assessment of Evaporation Stoichiometry 136

4.3.3.1 Vapor Pressure Measurement 136

4.3.3.2 Sublimation/Distillation 136

4.3.3.3 Composition Analysis and Decomposition Equilibrium 137

4.3.3.4 Deposition of Multicomponent Oxide Thin Films 138

4.3.4 Experimental Results 138

4.3.4.1 Thermal Stability of Double Alkoxides 139

4.3.4.2 Resolved Vapor Pressure of Double Alkoxides 140

4.4 Autostoichiometric Vapor Deposition 141

4.4.1 Deposition of LiTaO3 from LiTa(i-OC4H9)6 141

4.4.2 Deposition of LiNbO3 from LiNb(n-OC4H9)6 144

4.4.3 Deposition of LiTaO3 from LiTa(n-OC4H9)6 146

4.4.3.1 Experimental 147

4.4.3.2 Results 149

References 156

5 Functional Nanocomposite Thin Films by Co-Sputtering&FengNiu 159

5.1 Introduction 159

5.2 Classification of Nanocomposite Films,Their Properties and Applications 160

5.3 Optical Properties of Small Particles Embedded in Different Matrixes 164

5.3.1 Definition of the Optical Constants of Matter 164

5.3.2 Classic Mie Theory for Scattering and Absorption of Small Spherical Particles 165

5.3.2.1 General Formula 165

5.3.2.2 Small Spherical Particles 167

5.3.2.3 Concentric Particles(Coated Spheres or Composite Spheres) 168

5.3.3 Simulation of Optical Properties of Nanocomposite Materials by the Effective-Medium Theories(EMTs) 168

5.3.3.1 Introduction 168

5.3.3.2 Various Effective-Medium Theories and Random Unit Cells(RUCs) 169

5.3.3.3 Limitation of the Effective-Medium Theories 172

5.3.4 The Bergman-Milton Theory of the"Bounds"on the Dielectric Constant of Inhomogeneous Media 176

5.3.5 Optical Properties of Metals in the Near UV,Visible and Near IR Regions 177

5.3.5.1 Determination of the Dielectric Function of Small Metal Particles 177

5.3.5.2 The Surface Plasma Resonance Absorption(PRA)on Small Metal Particles 178

5.3.5.3 Limitation of the Mean Free Path(MFP)by Small Particle Boundary Scattering 178

5.3.5.4 Optical Properties of Pure Metals 179

5.4 Electronic Transport Characteristics of Nanocomposites 183

5.4.1 Electronic Transport Properties in Amorphous Semiconductors 183

5.4.2 Electronic Transport in Granular Metal Films(Cermet Films) 185

5.4.2.1 Conductivity in the Metallic Regime 186

5.4.2.2 Conductivity in the Dielectric Regime 187

5.4.3 Electronic Transport in Metal/Semiconductor Systems 189

5.4.3.1 Schottky Barrier(SB)Contact 189

5.5 Quantum Size Effects of Small Metal Particles 190

5.5.1 Introduction 190

5.5.2 Quantum Size Effect(QSE)on the Optical Properties of Small Metal Particles 192

5.6 Preparation of Nanocomposite Thin Film by Co-Sputtering 193

5.7 Microstructure,Optical and Electronic Transport Properties of Si-Ag Nanocomposite Thin Films 195

5.7.1 Introduction 195

5.7.2 Determination of the Film Composition,Thickness and Mean Ag Particle Size 196

5.7.3 Microstructural Characterization 197

5.7.3.1 X-ray Diffraction(XRD) 197

5.7.3.2 Conventional TEM Results 198

5.7.3.3 HREM Results 201

5.7.4 The Effect of Substrate Temperature 203

5.7.5 Optical Properties in the Near UV,Visible and Near IR 203

5.7.5.1 Optical Absorption in the Near UV,Visible and Near IR 203

5.7.5.2 The Effects of Substrate Temperature 203

5.7.5.3 Determination of Optical Constants of the Thick Film at 632.8nm 203

5.7.6 Electronic Transport Properties 206

5.7.6.1 Sheet Resistance of the Thin Films as a Function of Ag Content 206

5.7.6.2 Sheet Resistance as a Function of Temperature 207

5.7.7 Discussion 209

5.7.7.1 Simulations of Optical Absorption by the Different EMTs 209

5.7.7.2 Electronic Transport Properties 213

References 216

6 Strength and Toughness of Functional Ceramic Matrix&Yongjian Sun 219

6.1 Introduction 219

6.2 Overview of Composite Technologies 221

6.2.1 Mechanical and Inteffacial Behavior of FCMCs 223

6.2.1.1 Mechanical Behavior of FCMCs 223

6.2.1.2 Fundamentals of Fiber/Matrix Interface 225

6.2.2 Processing of Ceramic Matrix Composites 229

6.2.2.1 Diversity of Processing Methods 229

6.2.2.2 Processing Methods for Glass Composites 231

6.2.3 Strengthening and Toughening Mechanisms in FCMCs 232

6.2.3.1 Mechanisms of Strengthening in FCMCs 232

6.2.3.2 Mechanisms of Toughening in FCMCs 238

6.3 Objectives and Approaches 249

6.4 An Unconventional Process of Glass Composites 250

6.4.1 Fabrication of Glass Composites 250

6.4.1.1 Selection of Materials 250

6.4.1.2 Fabrication Procedures 251

6.4.2 Microstructure of Composites 253

6.4.2.1 Density,Uniformity and Transparency of Composites 253

6.4.2.2 Influences of Processing Parameters 255

6.4.3 Testing Techniques 257

6.5 Mechanical and Interfacial Properties of Composites 260

6.5.1 Mechanical Behavior of Composites 260

6.5.1.1 Load-Displacement Responeses 261

6.5.1.2 Mechanical Properties of Glass and Composites 261

6.5.2 Fiber/Matrix Interfacial Properties 265

6.5.2.1 Fiber Pushout Tests 265

6.5.2.2 Measurement of Matrix Crack Spacing 270

6.6 Micromechanisms of Multiple Matrix Cracking and Interfacial Debonding 271

6.6.1 In-situ Analysis of Matrix Cracking and Interfacial Debonding 271

6.6.1.1 Multiple Matrix Cracking 273

6.6.1.2 Interfacial Debonding 275

6.6.1.3 Interaction between the Matrix Cracks and Interfacial Debond 277

6.6.2 A New Theoretical Model for Interfacial Debonding 279

6.6.2.1 Stress Distribution in a Composite Unit 280

6.6.2.2 Displacement Calculations 281

6.6.2.3 Energy Balance Approach for Bridging-Stress Calculation 282

6.7 A Novel Technique for Studying Fiber Reinforcement 287

6.7.1 Determination of Fiber-Bridging Stress by Debond Length Measurement 287

6.7.1.1 Techniques for Determining Fiber-Bridging Stress 288

6.7.1.2 Debond Length and COD Profiles 290

6.7.1.3 Predicted and Measured COD Profiles 292

6.7.1.4 Fiber-Bridging Stress Distributions 294

6.7.2 Contribution of Fiber-Bridging to Fracture Toughness 297

6.7.2.1 SENB Test,DLM and COD Measurements 297

6.7.2.2 Debond Length and COD Profiles 298

6.7.2.3 Determination of Fiber-Bridging Stress 300

6.7.2.4 Determination of Fracture Toughness 304

6.8 Summary 307

References 308

7 Applications of HRTEM in Functional Materials&Xiaojing Wu 312

7.1 Theory of High Resolution Transmission Electron Microscopy(HRTEM) 312

7.1.1 Phase Contrast 312

7.1.2 Weak-Phase Object Approximation 315

7.1.3 Multislice Method 317

7.1.4 Pseudo-Weak-Phase Object Approximation 319

7.1.5 Resolving Power of Phase Contrast 320

7.1.5.1 Point-to-Point Resolving Power 320

7.1.5.2 Information Limit 321

7.1.5.3 Line Resolving Power 321

7.2 What Can be Achieved by HRTEM? 322

7.2.1 Crystal Structure Determination 322

7.2.2 Microstructure and Defect Observation 325

7.2.3 Thin Film Structure Observation 325

7.3 Specimen Preparation 326

7.3.1 Crushing Method 326

7.3.2 Ion-Milling Method 327

7.3.3 Electropolishing Method 328

7.4 Applications of HRTEM for High Tc Superconducting Cuprates 328

7.4.1 Structure Determination of(Hg,Tl)2Ba2(Hg,Tl)Cu2Oy in a Multiphase Sample 330

7.4.2 Superstructure Formed by Oxygen Vacancies in(Bi,Pb)-2223 335

7.4.3 Modulation Structure Determination for"Pb"-1212 and"Pb"-1223 340

7.5 New Developments in HRTEM 349

References 351

8 Applications of Convergent-Beam Electron Diffraction in Materials Microcharacterization&Renhui Wang and Huamin Zou 354

8.1 Introduction 354

8.2 Experimental Technique 355

8.3 Convergent-Beam Electron Diffraction under Two-Beam Dynamic Condition—Determination of Foil Thickness and Extinction Distance 359

8.3.1 Two-Beam Dynamic Theory of Electron Diffraction 359

8.3.2 CBED Determination of Rocking Curves 361

8.3.3 CBED Determination of Foil Thickness and Extinction Distance 363

8.4 Convergent-beam Electron Diffraction under Kinematic Condition—Higher-Order Laue Zone Lines 365

8.4.1 Formation of HOLZ Lines 365

8.4.2 Indexing and Computer Simulation of HOLZ Line Patterns 367

8.4.3 Factors Affecting the Quality of a HOLZ Line Pattern 368

8.4.4 Some Applications of HOLZ Reflections and HOLZ Lines 370

8.4.4.1 Determination of Lattice Constants of Micro-areas 370

8.4.4.2 Determination of Crystallographic Symmetry 371

8.4.4.3 Determination of Crystal Structure Parameters 371

8.4.4.4 Determination of Characteristic Parameters of Defects 371

8.5 Convergent-Beam Electron Diffraction Determination of Crystal Symmetry 372

8.5.1 Symmetry Elements That Can Be Determined by CBED Technique 372

8.5.2 Thirty One Diffraction Groups and Their CBED Determination 374

8.5.3 CBED Determination of Point Groups 383

8.6 Convergent-Beam Electron Diffraction Determination of Burgers Vectors of Dislocations in Crystals and Quasicrystals 383

8.6.1 Twisting Direction of a Reflection Fringe Induced by a Dislocation Line 383

8.6.2 Number of Nodes in the Split Reflection Fringes Induced by a Dislocation Line 387

8.6.3 Defocus CBED Technique for Determining Burgers Vectors of Dislocations in Crystals 388

8.6.4 Defocus CBED Technique for Determining Burgers Vectors of Dislocations in Quasicrystals 391

8.7 Convergent-Beam Electron Diffraction Determination of Crystal Structures 393

8.7.1 Many-Beam Dynamic Theory of Electron Diffraction 393

8.7.2 Structure Factor Determination by Means of CBED Technique 395

8.8 CBED Study of Interfacial Strain Fields 397

8.8.1 Interfacial Strain Determination by Using HOLZ Line Shifting 397

8.8.1.1 Factors Affecting HOLZ Line Position 397

8.8.1.2 Methods for Determining Lattice Strain from HOLZ Line Shifts 400

8.8.2 Interfacial Strain Determination by Using HOLZ Line Splitting 405

References 408

9 Numerical Simulations for Micromechanical Analyses of Fiber-Reinforced Composites,Thin Films and Coatings&Yijun Liu 410

9.1 Introduction 410

9.1.1 Numerical Simulations in Materials Research 411

9.1.2 The Finite Element Method(FEM) 412

9.1.3 The Boundary Element Method(BEM) 412

9.2 Formulation of the Boundary Element Method 413

9.2.1 The Governing Equations 413

9.2.2 The Boundary Integral Equation Formulation 414

9.3 Micromechanical Analysis of Fiber-Reinforced Composites with Interphases 416

9.3.1 Review of the Research 416

9.3.2 Two Unit Cell Models with the Interphase 421

9.3.3 Numerical Examples 424

9.3.4 Discussion 429

9.4 Interface Stress Analysis of Thin Films and Coatings 430

9.4.1 A Thin Film Model 430

9.4.2 Thin Coatings on a Shaft 431

9.4.3 Discussion 433

9.5 Closing Remarks 434

9.6 Acknowledgment 435

References 435

Index 439