《微分几何》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:彭家贵,陈卿编著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2002
  • ISBN:7040110253
  • 页数:251 页
图书介绍:《微分几何》共10章,第1章~第5章为第一部分,系统讲述了三维欧氏空间中曲线、曲面的局部几何理论和曲面的内蕴几何学,这部分内容可作为数学专业本科生微分几何必修课教材;第6章~第10章为第二部分,介绍有关曲面整体理论的一些基本结果,是整体微分几何一些经典问题选讲,它涉及数学的其它领域,可作为高年级本科生的专业课教材或课外阅读材料。

第一部分 曲线与曲面的局部微分几何 1

第1章 欧氏空间 3

1.1 向量空间 3

1.2 欧氏空间 6

第2章 曲线的局部理论 14

2.1 曲线的概念 14

2.2 平面曲线 15

2.3 E3的曲线 19

2.4 曲线论基本定理 24

第3章 曲面的局部理论 31

3.1 曲面的概念 31

3.2 曲面的第一基本形式 38

3.3 曲面的第二基本形式 43

3.4 法曲率与Weingarten变换 47

3.5 主曲率与Gauss曲率 54

3.6 曲面的一些例子 59

第4章 标架与曲面论基本定理 71

4.1 活动标架 71

4.2 自然标架的运动方程 74

4.3 曲面的结构方程 79

4.4 曲面的存在惟一定理 82

4.5 正交活动标架 85

4.6 曲面的结构方程(外微分法) 92

第5章 曲面的内蕴几何学 105

5.1 曲面的等距交换 105

5.2 曲面的协变微分 110

5.3 测地曲率与测地线 115

5.4 测地坐标系 121

5.5 Gauss-Bonnet公式 129

5.6 曲面的Laplace 133

5.7 Riemann度量 141

第二部分 整体微分几何选讲 153

第6章 平面曲线的整体性质 155

6.1 平面的闭曲线 155

6.2 平面的凸曲线 160

第7章 曲面的若干整体性质 165

7.1 曲面的整体描述 165

7.2 整体的Gauss-Bonnet公式 169

7.3 紧致曲面的Gauss映射 176

7.4 凸曲面 181

7.5 曲面的完备性 191

第8章 常Gauss曲率曲面 197

8.1 常正Gauss曲率曲面 197

8.2 常负Gauss曲率面与Sine-Gordon方程 199

8.3 Hilbert定理 201

8.4 Backlund变换 204

第9章 常平均曲率曲面 209

9.1 Hopf微分与Hopf定理 209

9.2 Alexsandrov惟一性定理 214

9.3 附录:常平均曲率环面 219

第10章 极小曲面 222

10.1 极小图 222

10.2 极小曲面的的Weierstrass表示 229

10.3 极小曲面的Gauss映射 234

10.4 面积的变分与稳定极小曲面 241

索引 248