第十八章 解算短距离大地测量主题的方法和公式 1
18-1 解算大地测量主题的一般概念 1
18-2 纬度差、经度差和方位角差展开为大地线长度s的级数式——勒让德尔(Legendre)级数式 4
18-3 解算大地测量正算问题的辅助点公式——史赖伯(Schreiber)公式 13
18-4 高斯(C.F.Gauss)平均引数公式 21
18-5 高斯平均引数公式(对数形式) 30
18-6 利用高斯投影平面解算大地测量主题 39
第十九章 解算长距离大地测量主题的方法和公式 46
19-1 贝塞耳(Bessel)方法 46
19-2 赫耳默特(Helmert)方法 58
19-3 韦贝尔(E.O.Weber)方法 61
19-4 约尔旦(Jordan)方法 78
19-5 长距离大地测量主题近似解算的方法 84
19-6 大地测量主题解算的唯一性问题 95
第二十章 大地线的微分公式 100
20-1 概述 100
20-2 赫耳默特第一类微分公式 102
20-3 赫耳默特的简化的第一类微分公式 107
20-4 赫耳默特第二类微分公式 111
20-5 赫里斯托夫的第一类和第二类微分公式 119
20-6 赫耳默特微分公式和赫里斯托夫微分公式的精度分析 128
20-7 其它大地线微分公式的简介 130
附录 136
(一)三角学公式 136
(二)常用级数 138
(三)幂级数运算 140
(四)地球椭圆体(克拉索夫斯基、海福特、贝塞耳)的元素及其有关数据表 148
(五)大地测量主题计算用表 149
(六)利用归化纬度u来求子年线弧长G 161