CHAPTER 1 Introduction to Parallel Computing 1
1.1 Motivating Parallelism 2
1.1.1 The Computational Power Argument-from Transistors to FLOPS 2
1.1.2 The Memory/Disk Speed Argument 3
1.1.3 The Data Communication Argument 4
1.2 Scope of Parallel Computing 4
1.2.1 Applications in Engineering and Design 4
1.2.2 Scientific Applications 5
1.2.3 Commercial Applications 5
1.2.4 Applications in Computer Systems 6
1.3 Organization and Contents of the Text 6
1.4 Bibliographic Remarks 8
Problems 9
CHAPTER 2 Parallel Progrmming Platforms 11
2.1.1 Pipelining and Superscalar Execution 12
2.1 Implicit parallelism:Trends in Microprocessor Architectures 12
2.1.2 Very Long Instruction Word Processors 15
2.2 Limitations of Memory System Performance 16
2.2.1 Improving Effective Memory Latency Using Caches 17
2.2.2 Impact of Memory Bandwidth 18
2.2.3 Alternate Approaches for Hiding Memory Latency 21
2.2.4 Tradeoffs of Multithreading and Prefetching 23
2.3 Dichotomy of Parallel Computing Platforms 24
2.3.1 Control Structure of parallel Platforms 25
2.3.2 Communication Model of Parallel Platforms 27
2.4 Physical Organization of Parallel Platforms 31
2.4.1 Architecture of an Ideal Parallel Computer 31
2.4.2 Interconnection Networks for Parallel Computers 32
2.4.3 Network Topologies 33
2.4.4 Evaluating Static Interconnection Networks 43
2.4.5 Evaluating Dynamic Interconnection Networks 44
2.4.6 Cache Coherence in Multiprocessor Systems 45
2.5.1 Message Passing Costs in Parallel Computers 53
2.5 Communication Costs in Parallel Machines 53
2.5.2 Communication Costs in Shared-Address-Space Machines 61
2.6 Routing Mechanisms for Interconnection Networks 63
2.7 Impact of Process-Processor Mapping and Mapping Techniques 65
2.7.1 Mapping Techniques for Graphs 66
2.7.2 Cost-Performance Tradeoffs 73
2.8 Bibliographic Remarks 74
Problems 76
CHAPTER 3 Principles of Parallel Algorithm Design 85
3.1 Preliminaries 86
3.1.1 Decomposition,Tasks,and Dependency Graphs 86
3.1.2 Granularity,Concurrency,and Task-Interaction 89
3.1.3 Processes and Mapping 93
3.1.4 Processes versus Processors 94
3.2 Decomposition Techniques 95
3.2.1 Recursive Decomposition 95
3.2.2 Data Decomposition 97
3.2.3 Exploratory Decomposition 105
3.2.4 Speculative Decomposition 107
3.2.5 Hybrid Decompositions 109
3.3 Characteristics of Tasks and Interactions 110
3.3.1 Characteristics of Tasks 110
3.3.2 Characteristics of Inter-Task Interactions 112
3.4 Mapping Techniques for Load Balancing 115
3.4.1 Schemes for Static Mapping 117
3.4.2 Schemes for Dynamic Mapping 130
3.5.1 Maximizing Data Locality 132
3.5 Methods for Containing Interaction Overheads 132
3.5.2 Minimizing Contention and Hot Spots 134
3.5.3 Overlapping Computations with Interactions 135
3.5.4 Replicating Data or Computations 136
3.5.5 Using Optimized Collective Interaction Operations 137
3.5.6 Overlapping Interactions with Other Interactions 138
3.6 Parallel Algorithm Models 139
3.6.1 The Data-Parallel Model 139
3.6.3 Tht Work Pool Model 140
3.6.2 The Task Graph Model 140
3.6.4 The Master-Slave Model 141
3.6.5 The Pipeline or Producer-Consumer Model 141
3.6.6 Hybrid Models 142
3.7 Bibliographic Remarks 142
Problems 143
CHAPTER 4 Basic Communication Operations 147
4.1 One-to-All Broadcast and All-to-One Reduction 149
4.1.1 Ring or Linear Array 149
4.1.2 Mesh 152
4.1.3 Hypercube 153
4.1.4 Balanced Binary Tree 153
4.1.5 Detailed Algorithms 154
4.1.6 Cost Analysis 156
4.2 All-to-All Broadcast and Reduction 157
4.2.1 Linear Array and Ring 158
4.2.2 Mesh 160
4.2.3 Hypercube 161
4.2.4 Cost Analysis 164
4.3 All-Reduce and Prefix-Sum Operations 166
4.4 Scatter and Gather 167
4.5 All-to-All Personalized Communication 170
4.5.1 Ring 173
4.5.2 Mesh 174
4.5.3 Hypercube 175
4.6.1 Mesh 179
4.6 Circular Shift 179
4.6.2 Hypercube 181
4.7 Improving the Speed of Some Communication Operations 184
4.7.1 Splitting and Routing Messages in Parts 184
4.7.2 All-Port Communication 186
4.8 Summary 187
4.9 Bibliographic Remarks 188
Problems 190
5.1 Sources of Overhead in Parallel Programs 195
CHAPTER 5 Analytical Modeling of Parallel Programs 195
5.2 Performance Metrics for Parallel Systems 197
5.2.1 Execution Time 197
5.2.2 Total Parallel Overhead 197
5.2.3 Speedup 198
5.2.4 Efficiency 202
5.2.5 Cost 203
5.3 The Effect of Granularity on Performance 205
5.4 Scalability of Parallel Systems 208
5.4.1 Scaling Characteristics of Parallel Programs 209
5.4.2 The Isoefficiency Metric of Scalability 212
5.4.3 Cost-Optimality and the Isoefficiency Function 217
5.4.4 A Lower Bound on the Isoefficiency Function 217
5.4.5 The Degree of Concurrency and the Isoefficiency Function 218
5.5 Minimum Execution Time and Minimum Cost-Optimal Execution Time 218
5.6 Asymptotic Analysis of Parallel Programs 221
5.7 Other Scalability Metrics 222
5.8 Bibliographic Remarks 226
Problems 228
CHAPTER 6 Programming Using the Message-Passing Paradigm 233
6.1 Principles of Message-Passing Programming 233
6.2 The Building Blocks:Send and Receive Operations 235
6.2.1 Blocking Message Passing Operations 236
6.2.2 Non-Blocking Message Passing Operations 239
6.3 MPI:the Message Passing Interface 240
6.3.2 Communicators 242
6.3.1 Starting and Terminating the MPI Library 242
6.2.3 Getting Information 243
6.3.4 Sending and Receiving Messages 244
6.3.5 Example:Odd-Even Sort 248
6.4 Topologies and Embedding 250
6.4.1 Creating and Using Cartesian Topologies 251
6.4.2 Example:Cannon s Matrix-Matrix Multiplication 253
6.5 Overlapping Communication with Computation 255
6.5.1 Non-Blocking Communication Operations 255
6.6.2 Broadcast 260
6.6.1 Barrier 260
6.6 Collective Communication and Computation Operations 260
6.6.3 Reduction 261
6.6.4 Prefix 263
6.6.5 Gather 263
6.6.6 Scatter 264
6.6.7 All-to-All 265
6.6.8 Example:One-Dimensional Matrix-Vector Multiplication 266
6.6.9 Example:Single-Source Shortest-Path 268
6.6.10 Example:Sample Sort 270
6.7 Groups and Communicators 272
6.7.1 Example:Two-Dimensional Matrix-Vector Multiplication 274
6.8 Bibliographic Remarks 276
Problems 277
CHAPTER 7 Programming Shared Address Space Platforms 279
7.1 Thread Basics 280
7.2 Why Threads? 281
7.4 Thread Basics:Creation and Termination 282
7.3 The POSIX Thread API 282
7.5 Synchronization Primitives in Pthreads 287
7.5.1 Mutual Exclusion for Shared Variables 287
7.5.2 Condition Variables for Synchronization 294
7.6 Controlling Thread and Synchronization Attributes 298
7.6.1 Attributes Objects for Threads 299
7.6.2 Attributes Objects for Mutexes 300
7.7 Thread Cancellation 301
7.8.1 Read-Write Locks 302
7.8 Composite Synchronization Constructs 302
7.8.2 Barriers 307
7.9 Tips for Designing Asynchronous Programs 310
7.10 OpenMP:a Standard for Directive Based Parallel Programming 311
7.10.1 The OpenMP Programming Model 312
7.10.2 Specifying Concurrent Tasks in OpenMP 315
7.10.3 Synchronization Constructs in OpenMP 322
7.10.4 Data Handling in OpenMP 327
7.10.5 OpenMP Library Functions 328
7.10.6 Environment Variables in OpenMP 330
7.10.7 Explicit Threads versus OpenMP Based Programming 331
7.11 Bibliographic Remarks 332
Problems 332
CHAPTER 8 Dense Matrix Algorithms 337
8.1 Matrix-Vector Multiplication 337
8.1.1 Rowwise 1-D Partitioning 338
8.1.2 2-D Partitioning 341
8.2 Matrix-Matrix Multiplication 345
8.2.1 A Simple Parallel Algorithm 346
8.2.2 Cannon s Algorithm 347
8.2.3 The DNS Algorithm 349
8.3 Solving a System of Linear Equations 352
8.3.1 A Simple Gaussian Elimination Algorithm 353
8.3.2 Gaussian Elimination with Partial Pivoting 366
8.3.3 Solving a Triangular System:Back-Substitution 369
8.3.4 Numerical Considerations in Solving Systems of Linear Equations 370
8.4 Bibliographic Remarks 371
Problems 372
CHAPTER 9 Sorting 379
9.1 Issues in Sorting on Parallel Computers 380
9.1.1 Where the Input and Output Sequences are Stored 380
9.1.2 How Comparisons are Performed 380
9.2 Sorting Networks 382
9.2.1 Bitonic Sort 384
9.2.2 Mapping Bitonic Sort to a Hypercube and a Mesh 387
9.3 Bubble Sort and its Variants 394
9.3.1 Odd-Even Transposition 395
9.3.2 Shellsort 398
9.4 Quicksort 399
9.4.1 Parallelizing Quicksort 401
9.4.2 Parallel Formulation for a CRCW PRAM 402
9.4.3 Parallel Formulation for Practical Architectures 404
9.4.4 Pivot Selection 411
9.5 Bucket and Sample Sort 412
9.6.1 Enumeration Sort 414
9.6 Other Sorting Algorithms 414
9.6.2 Radix Sort 415
9.7 Bibliographic Remarks 416
Problems 419
CHAPTER 10 Graph Algorithms 429
10.1 Definitions and Representation 429
10.2 Minimum Spanning Tree:Prim s Algorithm 432
10.3 Single-Source Shortest Paths:Dijkstra s Algorithm 436
10.4 All-Pairs Shortest Paths 437
10.4.1 Dijkstra s Algorithm 438
10.4.2 Floyd s Algorithm 440
10.4.3 Performance Comparisons 445
10.5 Transitive Closure 445
10.6 Connected Components 446
10.6.1 A Depth-First Search Based Algorithm 446
10.7 Algorithms for Sparse Graphs 450
10.7.1 Finding a Maximal Independent Set 451
10.7.2 Single-Source Shortest Paths 455
10.8 Bibliographic Remarks 462
Problems 465
CHAPTER 11 Search Algorithms for Discrete Optimization Problems 469
11.1 Definitions and Examples 469
11.2 Sequential Search Algorithms 474
11.2.1 Depth-First Search Algorithms 474
11.2.2 Best-First Search Algorithms 478
11.3 Search Overhead Factor 478
11.4 Parallel Depth-First Search 480
11.4.1 Important Parameters of Parallel DFS 482
11.4.2 A General Framework for Analysis of Parallel DFS 485
11.4.3 Analvsis of Load-Balancing Schemes 488
11.4.4 Termination Detection 490
11.4.5 Experimental Results 492
11.4.6 Parallel Formulations of Depth-First Branch-and-Bound Search 495
11.4.7 Parallel Formulations of IDA 496
11.5 Parallel Best-First Search 496
11.6 Speedup Anomalies in Parallel Search Algorithms 501
11.6.1 Analysis of Average Speedup in Parallel DFS 502
11.7 Bibliographic Remarks 505
Problems 510
CHAPTER 12 Dynamic Programming 515
12.1 Overview of Dynamic Programming 515
12.2 Serial Monadic DP Formulations 518
12.2.1 The Shortest-Path Problem 518
12.2.2 The O/I Knapsack Problem 520
12.3 Nonserial Monadic DP Formulations 523
12.3.1 The Longest-Common-Subsequence Problem 523
12.4 Serial Polyadic DP Formulations 526
12.4 1 Floyd s All-Pairs Shortest-Paths Algorithm 526
12.5 Nonserial Polyadic DP Formulations 527
12.5.1 The Optimal Matrix-Parenthesization Problem 527
12.6 Summary and Discussion 530
12.7 Bibliographic Remarks 531
Problems 532
CHAPTER 13 Fast Fourier Transform 537
13.1 The Serial Algorithm 538
13.2 The Binary-Exchange Algorithm 541
13.2.1 A Full Bandwidth Network 541
13.2.2 Limited Bandwidth Network 548
13.2.3 Extra Computations in Parallel FFT 551
13.3 The Transpose Algorithm 553
13.3.1 Two-Dimensional Transpose Algorithm 553
13.3.2 The Generalized Transpose Algorithm 556
13.4 Bibliographic Remarks 560
Problems 562
APPENDIX A Complexity of Functions and Order Analytsis 565
A.1 Complexity of Functions 565
A.2 Order Analysis of Functions 566
Bibliography 569
Author Index 611
Subject Index 621