1 INTRODUCTION AND REVIEW 1
1.1 Historical Perspective 1
1.2 Definitions,Derivations,and Discovery 3
1.3 Review of Quantum Mechanics 5
1.3.1 The Particle in a Box:A Model for Translational Energies 7
1.3.2 The Rigid Rotor:A Model for Rotational Motion of Diatomics 10
1.3.3 The Harmonic Oscillator:Vibrational Motion 14
1.4 Approximate Solutions to the Schr?dinger Equation 19
1.4.1 Variation Method 19
1.4.2 Perturbation Theory 21
1.5 Statistical Mechanics 23
1.6 Summary 29
1.7 Problems 30
BIBLIOGRAPHY 31
2 THE NATURE OF ELECTROMAGNETIC RADIATION 32
2.1 Introduction 32
2.2 The Classical Description of Electromagnetic Radiation 34
2.2.1 Maxwell s Equations 34
2.2.2 Polarization Properties of Light 39
2.2.3 Electric Dipole Radiation 40
2.3 Propagation of Light in Matter 41
2.3.1 Refraction 41
2.3.2 Absorption and Emission of Light 44
2.3.3 Effect of an Electromagnetic Field on Charged Particles 45
2.4 Quantum Mechanical Aspects of Light 46
2.4.1 Quantization of the Radiation Field 46
2.4.2 Blackbody Radiation and the Planck Distribution Law 48
2.4.3 The Photoelectric Effect and the Discovery of Photons 51
2.5 Summary 52
2.6 Problems 53
BIBLIOGRAPHY 55
3 ELECTRIC AND MAGNETIC PROPERTIES OF MOLECULES AND BULK MATTER 56
3.1 Introduction 56
3.2 Electric Properties of Molecules 57
3.2.1 Review of Electrostatics 58
3.2.2 Electric Moments 60
3.2.3 Quantum Mechanical Calculation of Multipole Moments 63
3.2.4 Interaction of Electric Moments with the Electric Field 64
3.2.5 Polarizability and Induced Moments 66
3.2.6 Frequency Dependence of Polarizability 68
3.2.7 Quantum Mechanical Expression for the Polarizability 70
3.3 Electric Properties of Bulk Matter 71
3.3.1 Dielectric Permittivity 71
3.3.2 Frequency Dependence of Permittivity 74
3.3.3 Relationships between Macroscopic and Microscopic Properties 76
3.3.4 The Local Field Problem:The Onsager and Kirkwood Models 80
3.4 Magnetic Properties of Matter 84
3.4.1 Basic Principles of Magnetism 84
3.4.2 Magnetic Properties of Bulk Matter 86
3.4.3 Magnetic Moments and Intrinsic Angular Momenta 87
3.5 Summary 89
3.6 Problems 89
BIBLIOGRAPHY 91
TIME-DEPENDENT PERTURBATION THEORY OF SPECTROSCOPY 92
4.1 Introduction:Time Dependence in Quantum Mechanics 92
4.2 Time-Dependent Perturbation Theory 94
4.2.1 First-order Solution to the Time-Dependent Schr?dinger Equation 94
4.2.2 Perturbation due to Electromagnetic Radiation:Momentumversus Dipole Operator 96
4.2.3 Fermi s Golden Rule and the Time-Energy Uncertainty Principle 99
4.3 Rate Expression for Emission 102
4.3.1 Photon Density of States 102
4.3.2 Fermi s Golden Rule for Stimulated and Spontaneous Emission 103
4.4 Perturbation Theory Calculation of Polarizability 104
4.4.1 Derivation of the Kramers-Heisenberg-Dirac Equation 104
4.4.2 Finite State Lifetimes and Imaginary Component of Polarizability 108
4.4.3 Oscillator Strength 109
4.5 Quantum Mechanical Expression for Emission Rate 110
4.6 Time Dependence of the Density Matrix 112
4.7 Summary 115
4.8 Problems 116
BIBLIOGRAPHY 118
5 THE TIME-DEPENDENT APPROACH TO SPECTROSCOPY 119
5.1 Introduction 119
5.2 Time-Correlation Functions and Spectra as Fourier Transform Pairs 121
5.3 Properties of Time-Correlation Functions and Spectral Lineshapes 126
5.4 The Fluctuation-Dissipation Theorem 128
5.5 Rotational Correlation Functions and Pure Rotational Spectra 130
5.5.1 Correlation Functions for Absorption and Light Scattering 131
5.5.2 Classical Free-Rotor Correlation Function and Spectrum 132
5.6 Reorientational Spectroscopy of Liquids 134
5.6.1 Dielectric Relaxation 134
5.6.2 Far-Infrared Absorption 138
5.6.3 Depolarized Rayleigh Scattering 141
5.7 Vibration-Rotation Spectra 144
5.8 Spectral Moments 147
5.9 Summary 149
5.10 Problems 149
BIBLIOGRAPHY 151
6 EXPERIMENTAL CONSIDERATIONS:ABSORPTION,EMISSION,AND SCATTERING 153
6.1 Introduction 153
6.2 Einstein A and B Coefficients for Absorption and Emission 154
6.3 Absorption and Stimulated Emission 156
6.4 Absorption and Emission Spectroscopy 158
6.4.1 Atomic Spectra 162
6.4.2 Molecular Electronic Spectra 162
6.5 Measurement of Light Scattering:The Raman and Rayleigh Effects 164
6.6 Spectral Lineshapes 167
6.7 Summary 171
6.8 Problems 171
BIBLIOGRAPHY 173
7 ATOMIC SPECTROSCOPY 174
7.1 Introduction 174
7.2 Good Quantum Numbers and Not So Good Quantum Numbers 174
7.2.1 The Hydrogen Atom:Energy Levels and Selection Rules 175
7.2.2 Many-Electron Atoms 181
7.2.3 The Clebsch-Gordan Series 187
7.2.4 Spin-Orbit Coupling 189
7.3 Selection Rules for Atomic Absorption and Emission 191
7.3.1 E1,M1,and E2 Allowed Transitions 191
7.3.2 Hyperfine Structure 193
7.4 The Effect of External Fields 196
7.4.1 The Zeeman Effect 196
7.4.2 The Stark Effect 199
7.5 Atomic Lasers and the Principles of Laser Emission 201
7.6 Summary 206
7.7 Problems 206
BIBLIOGRAPHY 208
8 ROTATIONAL SPECTROSCOPY 209
8.1 Introduction 209
8.2 Energy Levels of Free Rigid Rotors 209
8.2.1 Diatomics 210
8.2.2 Polyatomic Rotations 213
8.3 Angular Momentum Coupling in Non-1Σ Electronic States 220
8.4 Nuclear Statistics and J States of Homonuclear Diatomics 223
8.5 Rotational Absorption and Emission Spectroscopy 226
8.6 Rotational Raman Spectroscopy 231
8.7 Corrections to the Rigid-Rotor Approximation 237
8.8 Internal Rotation 240
8.8.1 Free Rotation Limit,κBT>>V0 241
8.8.2 Harmonic Oscillator Limit,κBT<<V0 242
8.9 Summary 244
8.10 Problems 245
BIBLIOGRAPHY 247
9 VIBRATIONAL SPECTROSCOPY OF DIATOMICS 248
9.1 Introduction 248
9.2 The Born-Oppenheimer Approximation and Its Consequences 249
9.3 The Harmonic Oscillator Model 252
9.4 Selection Rules for Vibrational Transitions 255
9.4.1 Infrared Spectroscopy 255
9.4.2 Raman Scattering 260
9.5 Beyond the Rigid Rotor-Harmonic Oscillator Approximation 262
9.5.1 Perturbation Theory of Vibration-Rotation Energy 263
9.5.2 The Morse Oscillator and Other Anharmonic Potentials 266
9.6 Summary 267
9.7 Problems 267
BIBLIOGRAPHY 269
10 VIBRATIONAL SPECTROSCOPY OF POLYATOMIC MOLECULES 270
10.1 Introduction 270
10.2 Normal Modes of Vibration 272
10.2.1 Classical Equations of Motion for Normal Modes 273
10.2.2 Example:Normal Modes of a Linear Triatomic 276
10.2.3 The Wilson F and G Matrices 278
10.2.4 Group Frequencies 279
10.3 Quantum Mechanics of Polyatomic Vibrations 280
10.4 Group Theoretical Treatment of Vibrations 282
10.4.1 Finding the Symmetries of Normal Modes 282
10.4.2 Symmetries of Vibrational Wavefunctions 288
10.5 Selection Rules for Infrared and Raman Scattering 290
10.6 Rotational Structure 293
10.7 Anharmonicity 296
10.8 Selection Rules at Work:Benzene 299
10.9 Solvent Effects on Infrared Spectra 302
10.10 Summary 305
10.11 Problems 305
BIBLIOGRAPHY 307
11 ELECTRONIC SPECTROSCOPY 309
11.1 Introduction 309
11.2 Diatomic Molecules:Electronic States and Selection Rules 311
11.2.1 Molecular Orbitals and Electronic Configurations 313
11.2.2 Term Symbols for Diatomics 316
11.2.3 Selection Rules 320
11.2.4 Examples of Selection Rules at Work:O2 and I2 322
11.3 Vibrational Structure in Electronic Spectra of Diatomics 323
11.3.1 Absorption Spectra 323
11.3.2 Emission Spectra 327
11.3.3 Dissociation and Predissociation 329
11.4 Born-Oppenheimer Breakdown in Diatomic Molecules 330
11.5 Polyatomic Molecules:Electronic States and Selection Rules 333
11.5.1 Molecular Orbitals and Electronic States of H2O 333
11.5.2 Franck-Condon Progressions in Electronic Spectra of Polyatomics 335
11.5.3 Benzene:Electronic Spectra and Vibronic Activity of Nontotally Symmetric Modes 338
11.6 Transition Metal Complexes 342
11.7 Emission Spectroscopy of Polyatomic Molecules 348
11.8 Chromophores 352
11.9 Solvent Effects in Electronic Spectroscopy 354
11.9.1 Solvent-Induced Frequency Shifts 355
11.9.2 Solvent Effects on Intensity 358
11.9.3 Specific Solvent Effects in Electronic Spectra 359
11.10 Summary 359
11.11 Problems 360
BIBLIOGRAPHY 362
12 RAMAN AND RESONANCE RAMAN SPECTROSCOPY 364
12.1 Introduction 364
12.2 Selection Rules in Raman Scattering 366
12.2.1 Off-Resonance Raman Scattering 369
12.2.2 Resonance Raman Scattering 371
12.3 Polarization in Raman Scattering 374
12.3.1 Polarization in Off-Resonance Raman Scattering 375
12.3.2 Polarization in Resonance Raman Scattering 378
12.4 Rotational and Vibrational Dynamics in Raman Scattering 380
12.5 Analysis of Raman Excitation Profiles 387
12.5.1 Transform Theory of Raman Intensity 388
12.6 Time-Dependent Theory of Resonance Raman Spectra 390
12.7 Raman Scattering as a Third-Order Nonlinear Process 399
12.8 Summary 404
12.9 Problems 406
BIBLIOGRAPHY 407
APPENDICES 408
A.MATH REVIEW 410
A.1 Vectors and Tensors in Three Dimensions 410
A.2 Matrices 412
A.3 Operations with Cartesian and Spherical Tensors 415
A.4 Spherical Harmonics 417
A.5 Wigner Rotation Functions and Spherical Tensors 418
A.6 The Clebsch-Gordan Series and 3j Symbols 421
BIBLIOGRAPHY 423
B.PRINCIPLES OF ELECTROSTATICS 424
B.1 Units 424
B.2 Some Applications of Gauss Law 425
B.2.1 The Lorentz Model of the Atom 426
B.2.2 Electric Field within a Capacitor 426
B.3 Some Mathematical Details 427
C.GROUP THEORY 430
C.1 Point Groups and Symmetry Operations 430
C.2 Information Conveyed by Character Tables 432
C.3 Direct Products and Reducible Representations 436
C.4 Character Tables 438
BIBLIOGRAPHY 448
SUBJECT INDEX 449