《超弦和M理论导论 第2版 英文》PDF下载

  • 购买积分:17 如何计算积分?
  • 作  者:(美)Michio Kaku著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2010
  • ISBN:9787510005701
  • 页数:587 页
图书介绍:超弦和M理论是现代物理学中最有趣最活跃的研究课题之一。读者对象:理论物理、高能物理、场论和弦论等专业的高年级本科生、研究生和相关专业的科研人员。

Ⅰ First Quantization and Path Integrals 1

1 Path Integrals and Point Particles 3

1.1 Why Strings? 3

1.2 Historical Review of Gauge Theory 7

1.3 Path Integrals and Point Particles 18

1.4 Relativistic Point Particles 25

1.5 First and Second Quantization 28

1.6 Faddeev-Popov Quantization 30

1.7 Second Quantization 34

1.8 Harmonic Oscillators 37

1.9 Currents and Second Quantization 40

1.10 Summary 44

References 47

2 Nambu-Goto Strings 49

2.1 Bosonic Strings 49

2.2 Gupta-Bleuler Quantization 60

2.3 Light Cone Quantization 67

2.4 BRST Quantization 70

2.5 Trees 72

2.6 From Path Integrals to Operators 78

2.7 Projective Invariance and Twists 84

2.8 Closed Strings 87

2.9 Ghost Elimination 90

2.10 Summary 95

References 99

3 Superstrings 101

3.1 Supersymmetric Point Particles 101

3.2 Two-Dimensional Supersymmetry 104

3.3 Trees 111

3.4 Local Two-Dimensional Supersymmetry 117

3.5 Quantization 119

3.6 GSO Projection 123

3.7 Superstrings 126

3.8 Light Cone Quantization of the GS Action 128

3.9 Vertices and Trees 134

3.10 Summary 136

References 139

4 Conformal Field Theory and Kac-Moody Algebras 141

4.1 Conformal Field Theory 141

4.2 Superconformal Field Theory 150

4.3 Spin Fields 155

4.4 Superconformal Ghosts 158

4.5 Fermion Vertex 165

4.6 Spinors and Trees 167

4.7 Kac-Moody Algebras 170

4.8 Supersymmetry 174

4.9 Summary 174

References 177

5 Multiloops and Teichmüller Spaces 178

5.1 Unitarity 178

5.2 Single-Loop Amplitude 181

5.3 Harmonic Oscillators 185

5.4 Single-Loop Superstring Amplitudes 192

5.5 Closed Loops 195

5.6 Multiloop Amplitudes 200

5.7 Riemann Surfaces and Teichmüller Spaces 210

5.8 Conformal Anomaly 217

5.9 Superstrings 221

5.10 Determinants and Singularities 224

5.11 Moduli Space and Grassmannians 226

5.12 Summary 238

References 242

Ⅱ Second Quantization and the Search for Geometry 245

6 Light Cone Field Theory 247

6.1 Why String Field Theory? 247

6.2 Deriving Point Particle Field Theory 250

6.3 Light Cone Field Theory 254

6.4 Interactions 261

6.5 Neumann Function Method 267

6.6 Equivalence of the Scattering Amplitudes 272

6.7 Four-String Interaction 275

6.8 Superstring Field Theory 280

6.9 Summary 286

References 290

7 BRST Field Theory 291

7.1 Covariant String Field Theory 291

7.2 BRST Field Theory 297

7.3 Gauge Fixing 300

7.4 Interactions 303

7.5 Witten's String Field Theory 308

7.6 Proof of Equivalence 311

7.7 Closed Strings and Superstrings 317

7.8 Summary 328

References 331

Ⅲ Phenomenology and Model Building 335

8 Anomalies and the Atiyah-Singer Theorem 337

8.1 Beyond GUT Phenomenology 337

8.2 Anomalies and Feynman Diagrams 341

8.3 Anomalies in the Functional Formalism 346

8.4 Anomalies and Characteristic Classes 348

8.5 Dirac Index 353

8.6 Gravitational and Gauge Anomalies 357

8.7 Anomaly Cancellation in Strings 366

8.8 Summary 368

References 372

9 Heterotic Strings and Compactification 373

9.1 Compactification 373

9.2 The Heterotic String 378

9.3 Spectrum 383

9.4 Covariant and Fermionic Formulations 386

9.5 Trees 388

9.6 Single-Loop Amplitude 391

9.7 E8 and Kac-Moody Algebras 395

9.8 Lorentzian Lattices 398

9.9 Summary 400

References 403

10 Calabi-Yau Spaces and Orbifolds 404

10.1 Calabi-Yau Spaces 404

10.2 Review of de Rahm Cohomology 409

10.3 Cohomology and Homology 413

10.4 K?hler Manifolds 419

10.5 Embedding the Spin Connection 426

10.6 Fermion Generations 428

10.7 Wilson Lines 432

10.8 Orbifolds 434

10.9 Four-Dimensional Superstrings 438

10.10 Summary 449

References 453

Ⅳ M-Theory 455

11 M-Theory and Duality 457

11.1 Introduction 457

11.2 Duality in Physics 458

11.3 Why Five String Theories? 460

11.4 T-Duality 462

11.5 S-Duality 465

11.5.1 Type IIA Theory 466

11.5.2 Type IIB Theory 469

11.5.3 M-Theory and Type IIB Theory 471

11.5.4 E8?E8 Heterotic String 473

11.5.5 Type Ⅰ Strings 473

11.6 Summary 476

References 480

12 Compactifications and BPS States 482

12.1 BPS States 482

12.2 Supersymmetry and P-Branes 484

12.3 Compactification 488

12.4 Example:D=6 490

12.4.1 D=6,N=(2,2)Theory 491

12.4.2 D=6,N=(1,1)Theories 494

12.4.3 M-Theory in D=7 496

12.5 Example:D=4,N=2 and D=6,N=1 497

12.6 Symmetry Enhancement and Tensionless Strings 499

12.7 F-Theory 501

12.8 Example:D=4 502

12.9 Summary 504

References 510

13 Solitons,D-Branes,and Black Holes 511

13.1 Solitons 511

13.2 Supermembrane Actions 513

13.3 Five-Brahe Action 516

13.4 D-Branes 517

13.5 D-Brahe Actions 521

13.6 M(atrix) Models and Membranes 525

13.7 Black Holes 532

13.8 Summary 537

13.9 Conclusion 542

References 544

Appendix 545

A.1 A Brief Introduction to Group Theory 545

A.2 A Brief Introduction to General Relativity 557

A.3 A Brief Introduction to the Theory of Forms 561

A.4 A Brief Introduction to Supersymmetry 566

A.5 A Brief Introduction to Supergravity 573

A.6 Notation 577

References 579

Index 581