图书介绍:机器学习因运用大数据实现强大且快速的预测而大受欢迎。然而,其强大的输出背后,真正力量来自复杂的算法,涉及大量的统计分析,以大数据作为驱动而产生实质性的洞察力。这本第2版的机器学习算法引导您取得与机器学习过程中的主要算法相关的显著开发结果,并帮助您加强和掌握有监督,半监督和加强学习等领域的统计解释。一旦全面吃透了算法的核心概念,您将基于最广泛的库(如sclkit-.、NLTK、TensorFlow和Keras)来探索现实世界的示例。您将发现新的主题,如主成分分析(PCA)、独立成分分析(ICA)、贝叶斯回归、判别分析、高级聚类和高斯混合等。