第1章 绪论 1
1.1经济学十大原理 1
1.2数学与经济学的关联 4
1.2.1诺贝尔经济学奖 4
1.2.2数学与经济学的辩证关系 5
1.3一般均衡理论 5
1.3.1瓦尔拉斯的一般均衡理论 6
1.3.2希克斯的短期均衡分析 6
1.3.3阿罗—德布鲁的一般均衡理论 7
1.3.4格朗蒙的短期一般均衡理论 8
1.3.5巴廷金的一般均衡理论 8
1.4经济控制论 8
1.4.1经济控制论发展概况 8
1.4.2经济控制系统的特点 9
第2章 离散经济系统及其求解 10
2.1差分方程与Z变换 10
2.1.1常系数线性齐次差分方程的解 10
2.1.2常系数线性非齐次差分方程 14
2.1.3Z变换法 16
2.2离散经济系统模型 19
2.2.1微观经济模型 19
2.2.2离散时间动态经济系统的状态空间模型 23
2.2.3离散时间动态经济系统的状态空间模型的求解 25
第3章 连续经济系统及其求解 27
3.1一阶微分方程的两种解法 27
3.1.1积分法 27
3.1.2拉普拉斯变换 29
3.2连续时间系统与离散时间系统的关系 31
3.3连续时间经济系统的稳定性 33
3.3.1连续时间系统稳定性的定义与判别方法 33
3.3.2连续时间线性系统稳定性的判别 34
3.3.3非线性系统稳定性的判别 36
3.3.4二维系统稳定性的判别 37
3.3.5高维系统的讨论 40
3.4连续时间数值方法 44
3.4.1有限差分法 44
3.4.2逼近法 47
3.4.3投影法 49
3.5政府公共开支对经济的影响 52
3.5.1模型 52
3.5.2政府支出改变对均衡时经济的影响 56
3.5.3政府支出改变对初始经济的影响 56
第4章 变分法简介及其经济应用 58
4.1变分法的几个基本概念 59
4.1.1泛函的概念 59
4.1.2泛函的变分 60
4.2泛函的极值与变分法 61
4.2.1泛函极值的必要条件(一阶条件——欧拉方程) 61
4.2.2泛函极值的充分条件(二阶条件) 62
4.3固定边值问题 62
4.3.1最优性条件 63
4.3.2几种特殊形式最简泛函的欧拉方程 65
4.4自由边值问题 67
4.4.1终点时间给定 67
4.4.2终点时间待定 70
第5章 经济系统的稳定性分析 74
5.1离散时间定常线性系统稳定性的定义 75
5.2离散时间定常线性系统稳定性的判别 77
5.2.1利用特征多项式判定稳定性 80
5.2.2利用矩阵A判定稳定性 81
5.3单商品市场供需均衡时价格运动的稳定性分析 82
5.3.1传统预期价格模型——蛛网模型 82
5.3.2参照正常价格的预期价格模型 83
5.3.3适应性预期价格模型 84
5.3.4心理预期价格模型 85
5.4动态乘数模型的稳定性分析 87
第6章 连续线性系统半稳定性分析 90
6.1半稳定性的定义 91
6.2半稳定性的判定 96
第7章 动态规划方法 104
7.1动态规划方法概述 104
7.2动态规划方法在离散经济控制系统中的应用 111
7.3动态规划方法在连续经济控制系统中的应用 114
第8章 离散、连续经济系统应用 119
第9章 随机系统最优控制 128
9.1引言 128
9.1.1问题描述 128
9.1.2最优准则(最优代价函数) 130
9.1.3最优控制方法 133
9.2随机最大值原理 136
9.2.1随机系统最优控制算法 137
9.2.2最短时间控制 139
9.2.3终值控制问题 143
9.2.4最小能量控制问题 148
9.3随机最大值原理证明 152
9.3.1必要条件的证明 152
9.3.2充分条件的证明 156
参考文献 159
后记 163