1 Water Soluble Poly(fluorene)Homopolymers and Copolymers for Chemical and Biological Sensors&G.C.Bazan and S.Wang 1
1.1 Introduction 1
1.2 General Structures and Properties 2
1.2.1 Design,Synthesis,and Structural Properties 2
1.2.2 Optical Properties 6
1.3 Signal Transduction Mechanisms in Sensors 9
1.4 Chemo-and Biosensor Applications 15
1.4.1 DNA Sensors 15
1.4.2 RNA Sensors 23
1.4.3 Protein Detection 25
l.4.4 Glucose Sensors 28
1.4 5 Detection of Other Small Molecules 30
1.5 Heterogeneous Platforms 31
1.6 Summary and Outlook 32
References 34
2 Polyelectrolyte-Based Fluorescent Sensors&K.Ogawa,K.E.Achyuthan,S.Chemburu,E.Ji,Y.Liu,GP.Lopez K.S.Schanze,and D.G.Whitten 39
2.1 General Introduction 39
2.1.1 Amplified Fluorescence Quenching 39
2.1.2 General Sensor Schemes:Bioassays Based on Quench/Unquench 43
2.2 Enzyme Activity Assays 44
2.2.1 Assay Formats and Types 44
2.2.2 Proteolytic Enzyme Assays Using Conjugated Polyelectrolytes 45
2.2.3 Phospholipase Assays Using Conjugated Polvelectrolytes 46
2.2.4 Assays Based on"Frustrated Super-Quenching" 49
2.2.5 Supramolecular Self-Assembly and Scaffold Disruption/Destruction Assays 50
2.2.6 Cyanines and Supra-Molecular Self-Assembly 50
2.2.7 Cyanine Chemistry 51
2.2.8 Glycosidases and Scaffold Disruption/Destruction Assay 52
2.3 Conjugated Polyelectrolyte Surface-Grafted Colloids 54
2.4 Summary and Conclusions 57
References 58
3 Structurally Integrated Photoluminescent Chemical and Biological Sensors:An Organic Light-Emitting Diode-Based Platform&R.Shinar and J.Shinar 61
3.1 Introduction 61
3.1.1 Photoluminescence-Based Sensors 61
3.1.2 Structurally Integrated OLED/Sensing Component Modules 62
3.l.3 Structural Integration of the OLED Array/Sensing Film 63
3.2 Single Analyte Monitoring 64
3.2.1 Gas-Phase and Dissolved Oxygen 64
3.2.2 Enhanced Photoluminescence of Oxygen-Sensing Films Through Doping with Titania Particles[70] 69
3.2.3 Glucose 71
3.2.4 Hydrazine(N2H4) 77
3.2.5 Anthrax Lethal Factor(LF) 79
3.3 Advanced Sensor Arrays 81
3.3.1 OLED-Based Multiple Analyte Sensing Platform 81
3.3.2 Extended Structural Integration:OLED/Sensing Component/Photodetector Integration 87
3.4 Future Directions 90
3.4.1 Improved OLEDs 90
3.4.2 Sensor Microarrays 91
3.4.3 Autonomous Field-Deployable Sensors for Biological Agents 91
3.5 Summary and Concluding Remarks 92
References 92
4 Lab-on-a-Chip Devices with Organic Semiconductor-Based Optical Detection&O.Hofmann,D.D.C.Bradley,J.C.deMello,and A.J.deMello 97
4.1 Introduction 97
4.1.1 Microfluidics and Lab-on-a-Chip 97
4.1.2 Detection Problem at the Microscale 102
4.2 Fabrication 103
4.2.1 Microfluidic Systems 103
4.2.2 Organic Semiconductor-Based Light Sources and Detectors 108
4.2.3 Towards Mass Manufacture 112
4.3 Functional Optical Components 116
4.3.1 OLED Light Sources for Microchip Analysis 116
4.3.2 Organic Photodetectors for Chemiluminescence Assays 118
4.3.3 Optical Filters for Head-On Fluorescence Detection 123
4.4 Applications 126
4.4.1 Microalbuminuria Determination On-Chip 127
4.4.2 Chemiluminescence-Based Diagnostic Tests 131
4.4.3 Towards Portable and Disposable Diagnostic Devices 135
4.5 Conclusions and Outlook 137
References 139
5 Solid-State Chemosensitive Organic Devices for Vapor-Phase Detection&J.Ho,A.Rose,T.Swager,and V.Bulovi? 141
5.1 Introduction 141
5.1.1 Chemical Sensors and Electronic Noses 141
5.2 Survey of State-of-the-Art Vapor-Phase Solid-State Chemosensing Organic Devices 142
5.2.1 Electrical Odor Sensors 144
5.2.2 Optical Odor Sensor 152
5.2.3 Summary 160
5.3 Recent Advances 160
5.3.1 Chemosensing Lasing Action 160
5.3.2 Chemical Sensing Heterojunction Photoconductors 172
References 180
6 Detection of Chemical and Physical Parameters by Means of Organic Field-Effect Transistors&A.Bonfiglio,I.Manunza,P.Cosseddu,and E.Orgiu 185
6.1 Introduction 185
6.2 An Overview of Organic Field-Effect Sensors 186
6.3 (Bio)chemosensing in Solution 188
6.3.1 Ion Sensitive Organic Field-Effect Transistors(ISOFETs) 188
6.4 Strain and Pressure Sensors 193
6.4.1 State of the Art of Mechanical Sensors Including OFETs 194
6.4.2 Flexible Structures for Mechanical Sensors 199
6.5 Design and Technology of Organic Field-Effect Sensors 202
6.6 Applications for Organic Field-Efiect Sensors 205
6.6.1 Artificial Sense of Touch 206
6.6.2 E-Textiles 208
6.7 Conclusionsqne 210
Reterences 210
7 Performance Requirements and Mechanistic Analysis of Organic Transistor-Based Phosphonate Gas Sensors K.See,J.Huang,A.Beeknell,and H.Katz 213
7.1 Overview of Electronic Sensors for Chemical Vapors and Warfare Agents 213
7.1.1 Introduction and Response Targets 213
7.1.2 Selectivity 214
7.1.3 Stability 215
7.1.4 Response Time 216
7.1.5 Power Consumption and Form Factor 216
7.2 Organic Semiconductor Transistor Sensors 216
7.2.1 Organic Electronics and Chemical Sensing 216
7.2.2 Electronic Transduction Mechanism 218
7.3 Testing Environments for Prototype Sensing Elements 219
7.3.1 Test Chambers 219
7.3.2 Device Packaging 225
7.4 Electrical Test Procedures 225
7.4.1 Generation of Saturation Curves at a Fixed Time Interval 225
7.4.2 Generation of Transfer Curves at a Fixed Time Interval 226
7.4.3 Pulsed Vs.Nonpulsed Measurements 227
7.4.4 Erasing Electrical History 227
7.5 Responses of Functionalized Organic Semiconductors to DMMP 228
7.5.1 Responses of Functionalized Hole-Transporting Oligomers,Including Blends and Surface Modifications 229
7.5.2 Responses of Electron-Transporting Films,Including Hvdroxvlated Island Overlayers 232
7.6 Data Analysis 234
7.6.1 Sensitivity of an OFET Sensor:Gate Voltage Dependence and Contributions of Mobility and Threshold Voltage Changes 234
7.6.2 Self-Consistent Equation Based on Simple Saturation Current 235
7.6.3 Contributions of Gate Dependent Mobility and ContactResistance 238
7.7 Sensing Mechanisms and OFET Models 239
7.8 Summary and Outlook 242
References 243
8 Electrochemical Transistors for Applications in Chemical and Biological Sensing&A.Kumar and J.Sinha 245
8.1 Introduction 245
8.2 Sensors Based on Electrochemical Transistors 247
8.2.1 Sensor Mechanisms 248
8.2.2 Enzyme-Based Sensing 251
8.2.3 Antibody Antigen-Based Sensing 255
8.2.4 DNA-Based Sensing 257
8.3 Recent advances in Design and Fabrication of Eletrochemical Transistors 258
8.4 Summary and Future Directions 260
References 261
9 PEDOT:PSS-Based Electrochemical Transistors for Ion-to-Electron Transduction and Sensor Signal Amplification&M.Berggren,R.Forchheimer,J.Bobacka,P.-O.Svensson,D.Nilsson,O.Larsson,and A.Ivaska 263
9.1 The PEDOT:PSS-Based Electrochemical Organic Thin Film Transistor 263
9.1.1 Electrochemical Transistors:A Brief Introduction and a Short Historical Review 263
9.1.2 The Operation Principle of the PEDOT:PSS-Based Electrochemical Organic Thin Film Transistor 264
9.1.3 Design Criteria and Device Operation Parameters 265
9.1.4 Manufacturing Techniques 267
9.2 The PEDOT:PSS OECT as an Ion-to-Electron Transducer 269
9.2.1 Different Sensor Principles of the PEDOT:PSS Electrochemical Transistor 269
9.2.2 Humidity Sensing 269
9.2.3 Ion-Selective Membranes 270
9.3 The PEDOT:PSS Electrochemical transistor in logic and amplification circuits 272
9.3.1 Introduction to Electrochemical Circuits and Systems 272
9.3.2 Electrochemical Digital Circuits 273
9.3.3 Electrochemical Analog Circuits 273
9.3.4 The Differential Amplifier 276
9.3.5 Zero Detector 277
9.3.6 Oscillators 277
9.4 Outlook 278
References 279
Index 281