1 Introduction toElectronics 2
1.1 ELECTRONICS TODAY 4
1.2 THE STUDY OF ELECTRONICS 6
Multiple Small Exposures 6
Study Techniques 8
1.3 A WORD ABOUT CURRENT 8
1.4 COMPUTER SIMULATION 10
Sample Circuit Simulation Programs 11
Using Computer Programs 13
PART 1 DIODES 15
2The Ideal Diode 16
2.1 INTRODUCTION 18
2.2 THE IDEAL DIODE 19
2.3 DIODE-RESISTOR CIRCUITS 20
Example 2.1 Simple Diode-Resistor Circuits 22
Example 2.2 Single Loop Circuit 23
Example 2.3 Multiple Resistor Circuit 24
2.4 IS A DIODE ON OR OFF?—TWO APPROACHES 25
Current Test 26
Voltage Test 26
Example 2.4 Diode Test 27
2.5 CURRENT TRAFFIC CONTROL—DIODE LOGIC 28
A Diode Logic Circuit 28
2.6 AC TO DC CONVERSION—THE HALF-WAVE RECTIFIER 30
Example 2.5 Half-Wave Rectifier Examples 31
AC-DC Conversion 32
Example 2.6 Finding DC Values 33
2.7 AC TO DC CONVERSION—THE FULL-WAVE RECTIFIER 34
The Diode Bridge Circuit 34
2.8 DIODE LIMITERS (CLIPPERS) 35
Top Clipping 36
Example 2.7 Diode Limiters—Top Clipping 38
Bottom Clipping 38
Example 2.8 Diode Limiters—Bottom Clipping 39
Symmetric Clipping 39
Example 2.9 Symmetric Clipping Circuits 40
3The Real Diode 46
3.1 INTRODUCTION 48
3.2 DIODE CURRENT AND VOLTAGE(THE Ⅰ-Ⅴ CURVE) 48
3.3 THE REAL DIODE 51
The Improved Diode Model 53
An Important Note 53
Current Test 53
Example 3.1 The Current Test Ⅰ 54
Example 3.2 The Current Test Ⅱ 54
Voltage Test 55
Example 3.3 The Voltage Test 55
3.4 DIODE CIRCUITS WITH REAL DIODES 56
The Half-Wave Rectifier Circuit 56
Example 3.4 The Half-Wave Rectifier 57
The Full-Wave Rectifier 59
Example 3.5 The Full-Wave Rectifier 60
The Clipping Circuit 61
Example 3.6 Two-Sided Limiting with Real Diodes 61
3.5 DIODE RESISTANCE 62
3.6 DIODE RATINGS—THE BREAKDOWN REGION 64
The ON Diode 64
Example 3.7 Approximating Power 65
The Breakdown Region 66
Example 3.8 Breakdown 67
3.7 COMMERCIALLY AVAILABLE DIODES—THE DIODE DATA SHEET 69
Catalog Data 69
Example 3.9 Diode Selection 69
Diode Data Sheets 70
The Diode Reverse Current 73
Reverse Recovery Time 74
Example 3.10 Using the Data Sheet 74
3.8 DIODE TESTING 75
A Bad Diode (Using the VOM) 75
A Bad Diode (Using the DMM) 76
3.9 DIODE CIRCUIT TROUBLESHOOTING 76
Example 3.11 Troubleshooting the Diode Limiter 78
Multimeter Testing 78
4 Diode—ReactiveCircuits 86
4.1 INTRODUCTION 88
4.2 THE CAPACITOR AS BATTERY 88
Example 4.1 Capacitor Discharge 89
4.3 HALF-WAVE RECTIFIER WITH CAPACITOR 90
Ripple 90
Example 4.2 Half-Wave Rectifier with Capacitor Ⅰ 92
Example 4.3 Half-Wave Rectifier with Capacitor Ⅱ 93
rms Ripple Factor 93
4.4 THE FULL-WAVE RECTIFIER WITH CAPACITOR 94
Example 4.4 Full-Wave Rectifier with Capacitor 95
Rectifier with Transformer 95
Example 4.5 Bridge Rectifier with Transformer 96
The Center-Tapped Transformer 96
Example 4.6 Center-Tapped Transformer Rectifier 97
4.5 DIODE CURRENT RATINGS 97
Half-Wave Rectifier 97
Example 4.7 Diode Currents 98
Example 4.8 Determining the Diode On-Time 99
Full-Wave Rectifiers 99
Diode Current Ratings 100
4.6 THE PEAK DETECTOR 101
Example 4.9 Peak Detector 101
4.7 THE DIODE AM DEMODULATOR 102
Example 4.10 AM Demodulation 104
4.8 DIODE CLAMPING CIRCUITS 105
Example 4.11 Clamping Circuits 107
4.9 THE VOLTAGE DOUBLER 108
4.10 DIODE-INDUCTOR CIRCUIT (FLYBACK) 109
Flyback Prevention 111
4.11 TROUBLESHOOTING DIODE-CAPACITOR CIRCUITS 112
The Capacitor 112
Example 4.12 Troubleshooting 112
Example 4.13 Troubleshooting Ⅱ 113
5 The Zener Diode—VoltageRegulation 120
5.1 INTRODUCTION 122
5.2 THE ZENER DIODE 123
Zener Diode Basics 123
The Real Zener Diode 125
5.3 ZENER DIODE CIRCUITS 126
Example 5.1 Zener Circuit 127
Zener Diode-Resistor Load Circuit 128
Is the Zener Diode in Breakdown?—An Alternate Approach 129
Example 5.2 Zener Diode—Resistor Circuit Ⅰ 129
Minimum Load Resistance 130
Example 5.3 Zener Diode—Resistor Circuit Ⅱ 130
5.4 ZENER CLIPPER CIRCUITS 131
Example 5.4 Zener Clipper 133
5.5 ZENER VOLTAGE REGULATOR CIRCUIT 134
Example 5.5 Zener Regulator—Minimum Load 135
Example 5.6 Zener Regulator—Regulator Resistor 135
5.6 INTEGRATED CIRCUIT VOLTAGE REGULATORS 136
5.7 TROUBLESHOOTING ZENER DIODES AND CIRCUITS 137
Example 5.7 Troubleshooting a Zener Diode Circuit 139
6 Special-PurposeDiodes andOpto-Electrical Devices 146
6.1 INTRODUCTION 148
Specialized Diodes 148
Troubleshooting Specialized Diodes 148
6.2 THE GERMANIUM DIODE 148
Example 6.1 The Germanium Diode 149
6.3 THE SCHOTTKY DIODE 150
Example 6.2 The Schottky Diode 151
6.4 THE TUNNEL DIODE 152
Example 6.3 The Tunnel Diode Circuit 153
6.5 THE VARACTOR DIODE 155
Example 6.4 The Varactor Diode 156
6.6 THE PHOTO DIODE 157
The Photoconductive Mode 157
Example 6.5 The Photoconductive Cell 158
The Light Spectrum 159
Example 6.6 Frequency and Wavelength 160
Commercial Photo Diodes Data Sheets 161
The Photovoltaic Mode 163
Example 6.7 The Photovoltaic Mode 164
6.7 THE PHOTORESISTOR (PHOTOCONDUCTIVE CELL) 165
Example 6.8 The Photoresistor 167
6.8 LIGHT-EMITTING DIODES (LED) 167
LED Basics 167
Example 6.9 A Bad LED Design 169
The Seven-Segment Display 170
6.9 THE PHOTO TRANSISTOR AND OPTO-ISOLATOR 172
The Photo Transistor 172
The Opto-Isolator (Opto-Coupler) 172
Fiber Optics 174
PART 2 BIPOLAR UNCTION TRANSISTORS (BJT) 179
7 The NPN Bipolar Junction Transistor 180
7.1 INTRODUCTION 182
7.2 BJT STATES OF OPERATION 183
Overview 184
The Active State 184
Example 7.1 Transistor Current Gain, β 186
Example 7.2 Emitter Current-Collector Current Relations 187
7.3 TRANSISTOR RATINGS 188
Transistor Power 188
Base Collector Breakdown (VCBO) 189
7.4 SIMPLE DC TRANSISTOR CIRCUITS(IB CONTROL) 189
Example 7.3 IB Control with Base Resistor 192
Example 7.4 IB Control with Base Supply Voltage 193
7.5 THE COLLECTOR RESISTOR 196
Example 7.5 Collector Resistor 197
7.6 THE CUT-OFF AND SATURATION STATES 199
CUT-OFF 199
SATURATION 200
Example 7.6 Base Supply Voltage and Saturation Ⅰ 202
Example 7.7 Base Supply Voltage and Saturation Ⅱ 203
Example 7.8 Base Resistor and Saturation Ⅰ 205
Example 7.9 Base Resistor and Saturation Ⅱ 206
Example 7.10 Collector Resistor and Saturation Ⅰ 207
Example 7.11 Collector Resistor and Saturation Ⅱ 208
Example 7.12 Collector Supply Voltage and Saturation Ⅰ 209
Example 7.13 Collector Supply Voltage and Saturation Ⅱ 210
7.7 DETERMINING THE STATE OF A TRANSISTOR 212
Example 7.14 Determining the State of a Transistor Ⅰ 212
Example 7.15 Determining the State of a Transistor Ⅱ 213
Example 7.16 Determining the State of a Transistor Ⅲ 215
7.8 DC TRANSISTOR DATA SHEET 216
8Troubleshooting 222
8.1 INTRODUCTION 224
Temporary Breadboard Building 224
Prototype Building 224
Repairing a Circuit That Once Worked 224
8.2 DC TROUBLESHOOTING, BRIEFLY 225
Recording the Estimated and Measured Voltages 226
Example 8.1 Recording Estimated Voltages 227
Example 8.2 Recording the Measured Voltages 228
8.3 THE COMPLETE DC TROUBLESHOOTING PROCEDURE 229
Troubleshoot the Circuit 229
Locate the Problem 230
Example 8.3 DC Troubleshooting Ⅰ 230
Example 8.4 DC Troubleshooting Ⅱ 231
Example 8.5 DC Troubleshooting Ⅲ 232
Example 8.6 DC Troubleshooting Ⅳ 232
Example 8.7 DC Troubleshooting Ⅴ 233
Summary of Examples 234
8.4 TYPES OF COMPONENT FAILURES 235
Resistor Failures 235
Transistor Failures 235
Open Circuit Failures in Transistors 236
Short Circuit Failures in Transistors 236
8.5 THE UNIVERSAL TRANSISTOR TEST CIRCUIT (UTTC) 237
Determining if a Transistor Is Good or Bad with the UTTC 238
Finding β3 with the UTTC 239
8.6 DC TROUBLESHOOTING EXAMPLES 239
Example 8.8 DC Troubleshooting Ⅵ 239
Example 8.9 DC Troubleshooting Ⅶ 240
Example 8.10 DC Troubleshooting Ⅷ 241
Example 8.11 DC Troubleshooting Ⅸ 241
Example 8.12 DC Troubleshooting Ⅹ 242
8.7 TROUBLESHOOTING IN THE LABORATORY 244
Why Not Current Measurements? 245
Tips on Using the Temporary Breadboard in the Lab 246
Common Problems in Using the Temporary Breadboards 247
8.8 DC TROUBLESHOOTING ON THE JOB 249
Obtaining the Circuit Diagram 249
Making Enough Copies of the Circuit Diagram 250
9 Biasing for Linear Applications 256
9.1 INTRODUCTION 258
9.2 BASE VOLTAGE BIASING (VB CONTROL) 259
Example 9.1 VB Control 262
9.3 THE COLLECTOR RESISTOR 263
Example 9.2 VB Control with Collector Resistor 264
Example 9.3 Comparison of IB and VB Control 266
Example 9.4 VB Control, Rc Variations 267
Example 9.5 Variable Base Voltage Biasing 269
9.4 THE VOLTAGE DIVIDER 270
Example 9.6 The Voltage Divider 271
Example 9.7 Approximate Voltage Divider with Load 272
9.5 SELF-BIASING THE TRANSISTOR 274
Example 9.8 Self-Biasing Circuit 275
9.6 VOLTAGE AMPLIFICATION 278
Example 9.9 Voltage Amplification 280
Example 9.10 Eect of Rcon Voltage Amplification 282
9.7 EXACT BASE VOLTAGE CALCULATIONS 284
The Thevenin Approach 284
Example 9.11 Thevenin Equivalent Ⅰ 286
Example 9.12 Thevenin Equivalent Ⅱ 287
Voltage Divider Versus the Exact Thevenin Approach 288
9.8 DC TROUBLESHOOTING 289
Voltage Divider Problems 289
VB-Control Transistor Problems 290
Transistor Failures 292
Example 9.13 DC Troubleshooting 294
10 The Common-Emitter Amplifier 304
10.1 INTRODUCTION 306
Example 10.1 DC and AC Signal Components 307
10.2 DC BIAS LEVELS 308
Biasing 308
Example 10.2 Bias Level Determination 310
DC Bias and Output Voltage Limits 311
Example 10.3 Maximum Voltage Swing Ⅰ 313
Example 10.4 Maximum Voltage Swing Ⅱ 314
10.3 THE AC BEHAVIOR OF THE TRANSISTOR 315
Example 10.5 Small-Signal AC Emitter Resistor 318
10.4 THE COMMON-EMITTER AMPLIFIER 319
Example 10.6 The Common-Emitter Amplifier Ⅰ 321
Example 10.7 The Common-Emitter Amplifier Ⅱ 322
10.5 THE EMITTER BYPASS CAPACITOR 323
The Capacitor 323
The Emitter Bypass Capacitor 324
Example 10.8 The Emitter Bypass Capacitor 326
10.6 INPUT CAPACITOR COUPLING—THE SELF-BIASED CIRCUIT 327
Example 10.9 The Input Coupling Capacitor 329
10.7 THE LOAD RESISTOR 330
Example 10.10 The Load Resistor 333
10.8 TROUBLESHOOTING 334
Example 10.11 Troubleshooting Ⅰ 336
Example 10.12 Troubleshooting Ⅱ 337
Example 10.13 Troubleshooting Ⅲ 338
Example 10.14 Troubleshooting Ⅳ 339
Example 10.15 Troubleshooting Ⅴ 340
11 The Box Model 348
11.1 INTRODUCTION 350
11.2 THE Box MODEL 351
The Load Resistor 352
Example 11.1 The Load Resistor Ⅰ 352
Example 11.2 The Load Resistor Ⅱ 354
Load Power 355
The Source Resistor 355
Example 11.3 The Source Resistance Ⅰ 356
Example 11.4 The Source Resistance Ⅱ 357
The Complete System 358
Example 11.5 The Total System 359
11.3 THE COMMON-EMITTER AMPLIFIER 360
No-Load Gain 361
Output Resistance 362
Input Resistance 363
General Derivation of Rbase 363
Formal Derivation of Rbase 364
Example 11.6 Box Model of the Common-Emitter Amplifier 366
Example 11.7 Box Model of the Bypassed Common-EmitterAmplifier 367
11.4 COMMON-EMITTER AMPLIFIER WITH LOAD AND SOURCE RESISTORS 369
Load Resistor 369
Example 11.8 Load Resistor 370
Source Resistor 372
Example 11.9 Source Resistor 372
The Complete Common-Emitter Amplifier 374
Example 11.10 The Complete Amplifier 375
11.5 MULTISTAGE AMPLIFIER 376
Example 11.11 Two-Stage Amplifier 379
12 The Emitter Follower (TheCommon-CollectorAmplifier) 388
12.1 INTRODUCTION—THE BUFFER AMPLIFIER 390
Example 12.1 The Buffer 392
Example 12.2 Buffer Design 393
12.2 THE EMITTER FOLLOWER COMMON-COLLECTOR AMPLIFIER) 395
No-Load Gain 395
Example 12.3 Emitter-Follower Box Model Gain 396
Input Resistance 398
Example 12.4 Emitter Follower Input Resistance 399
Output Resistance 400
Example 12.5 Emitter-Follower Output Resistance 402
The Complete Box Model 403
Example 12.6 The Complete Emitter Follower 404
12.3 THE EMITTER FOLLOWER AS A CURRENT BUFFER 406
Example 12.7 The Current Buffer 407
12.4 ZENER VOLTAGE REGULATION AND THE CURRENT BUFFER 408
Example 12.8 Zener Regulation 409
12.5 TROUBLESHOOTING 411
Shorted CL 411
Open CL 412
13 Improved BJT AC Models 418
13.1 INTRODUCTION 420
13.2 BJT TRANSISTOR CHARACTERISTIC CURVES 420
13.3 THE SIMPLE BJT MODEL 423
Example 13.1 The Simple BJT AC Model 424
13.4 THE HYBRID-PI BJT MODEL 425
The Hybrid-Pi Model 425
Example 13.2 The Early Voltage and ro 427
Example 13.3 The Hybrid-Pi Model 427
Example 13.4 The Hybrid-Pi Model with ro 428
Alternate Hybrid-Pi Model 429
13.5 THE H-PARAMETER BJT MODEL 430
Example 13.5 h-Parameter Model 431
Example 13.6 The BJT h-Parameter Model 432
13.6 MODEL COMPARISONS 433
Simple Model <—> Hybrid-Pi Model 433
Hybrid-Pi Model <—> h-Parameter Model 434
13.7 BJT DATA SHEETS 435
Interpreting Data Sheets 435
Determining the Early Voltage 435
14 The PNP Transistor 442
14.1 INTRODUCTION 444
14.2 VB CONTROL OF PNP TRANSISTORS 446
Example 14.1 VB Control Ⅰ 449
Example 14.2 VB Control Ⅱ 450
14.3 DOUBLE-SIDED SUPPLY BIASING 451
Example 14.3 Double-Sided Supply Voltages 452
14.4 THE PNP COMMON-EMITTER AMPLIFIER 453
DC Bias Analysis 453
AC Analysis—The Box Model 454
Gain 455
Input Resistance 455
Output Resistance 455
System Gain 456
Example 14.4 The PNP Common-Emitter Amplifier 456
14.5 THE PNP EMITTER FOLLOWER COMMON-COLLECTOR) 458
DC Bias Analysis 458
AC Analysis—The Box Model 458
Gain 459
Input Resistance 459
Output Resistance 460
System Gain 460
Example 14.5 The PNP Emitter Follower 460
14.6 IB CONTROL 462
Example 14.6 Comparison of the NPN and PNP Inverters 463
14.7 COMBINED NPN-PNP CIRCUITS 465
VB Control 465
IB Control 466
Current Gain 467
14.8 TROUBLESHOOTING 468
Bad Connections 468
Transistor Open Failures 469
Transistor Short Failures 469
AC Signal Tracing 470
Example 14.7 Troubleshooting 470
15 The Common-Base Amplifier 480
15.1 INTRODUCTION 482
15.2 DC BIASING OF THE COMMON-BASE AMPLIFIER 482
The NPN Common-Base Amplifier 482
The PNP Common-Base Amplifier 484
Example 15.1 DC Bias Levels in the Common-Base Amplifier 485
15.3 AC BEHAVIOR OF THE COMMON-BASE AMPLIFIER—BOX MODEL 486
Gain 487
Output Resistance 488
Input Resistance 488
Example 15.2 Box Model of the Common-Base Amplifier 489
15.4 THE COMPLETE COMMON-BASE AMPLIFIER 490
Example 15.3 Complete AC Analysis of the Common-Base Amplifier 491
15.5 AMPLIFIER COMPARISONS 492
15.6 TROUBLESHOOTING 492
Example 15.4 DC Troubleshooting the Common-Base 493
Example 15.5 AC Signal Tracing in the Common-Base Amplifier 494
16 Specialized Transistor Circuits 500
16.1 INTRODUCTION 502
16.2 THE DARLINGTON CONNECTION 502
Equivalent AC Emitter Resistance 503
16.3 DARLINGTON COMMON-EMITTER AMPLIFIER 504
DC Bias Levels 504
AC Analysis—the Box Model 505
Example 16.1 The Darlington Common-Emitter Amplifier 506
16.4 THE CASCODE AMPLIFIER 508
DC Analysis 508
Example 16.2 DC Analysis of the Common-Base Amplifier 510
16.5 THE CASCODE AMPLIFIER—AC ANALYSIS 512
Example 16.3 Cascode Amplifier—AC Analysis 514
16.6 COLLECTOR-FEEDBACK BIASING 515
Example 16.4 Collector-Feedback Biasing 516
16.7 ANALYSIS OF COLLECTOR-FEEDBACK BIASING—THE MILLER EFFECT 517
Input Resistance—The Miller Effect 518
Example 16.5 Collector Feedback—AC Analysis 520
17 The Differential Amplifier 526
17.1 INTRODUCTION 528
17.2 BIASING THE DIFFERENTIAL AMPLIFIER 530
Example 17.1 NPN Differential Amplifier Biasing 531
Example 17.2 Current Source Biasing 533
Example 17.3 PNP Differential Amplifier Biasing 533
17.3 THE DIFFERENTIAL MODE 535
Example 17.4 Differential-Mode Gain 538
The Differential-Mode Box Model 539
Limits on Input Voltage Difference 540
17.4 COMMON-MODE GAIN 541
Example 17.5 Common-Mode Gain 544
17.5 THE GENERAL DIFFERENTIAL AMPLIFIER 545
Example 17.6 General Differential Amplifier Response 546
17.6 INTEGRATED CIRCUIT DIFFERENTIAL AMPLIFIERS 548
Example 17.7 Instrumentation Amplifiers 551
17.7 TROUBLESHOOTING 552
Open Failures 552
Short Failures 553
Example 17.8 Troubleshooting Differential Amplifier Circuits 554
Troubleshooting Integrated Circuit Amplifiers 554
18 Current Sources 562
18.1 INTRODUCTION 564
18.2 THE BASIC NPN TRANSISTOR CURRENT SOURCE 565
VB Control 565
Example 18.1 The NPN Current Source 566
Maximum Load Voltage and Resistance 567
Example 18.2 Maximum Load Voltage and Current 568
18.3 THE BASIC PNP TRANSISTOR CURRENT SOURCE 568
VB Control 569
Maximum Load Voltage and Resistance 569
Example 18.3 The PNP Current Source 570
18.4 NEGATIVE VOLTAGE SUPPLY CURRENT SOURCES 571
NPN 571
Example 18.4 Negative Voltage Supply NPN Current Source 572
PNP 573
Example 18.5 Negative Voltage Supply PNP Current Source 573
18.5 TEMPERATURE COMPENSATION 575
Example 18.6 Temperature Compensation 576
18.6 THE CURRENT MIRROR 578
Example 18.7 Negative Supply NPN Current Mirror 580
Example 18.8 PNP Current Mirror 580
18.7 CURRENT SOURCE BIASING OF DIFFERENTIAL AMPLIFIERS 581
DC Bias 582
Box Model 582
Common-Mode Rejection Ratio 583
Current Source Output Resistance 583
Example 18.9 Differential Amplifier 583
19 Power Amplifiers 590
19.1 INTRODUCTION 592
19.2 THE COMMON-EMITTER AMPLIFIER—MAXIMUM VOLTAGE SWING 593
Symmetrical Swing 594
Example 19.1 Maximum Symmetrical Swing 595
Example 19.2 Maximum Swing—Common-Emitter Amplifier 597
Capacitor Coupling and the Bypass Capacitor 598
Example 19.3 Common Emitter with Capacitors Ⅰ 599
Example 19.4 Common Emitter with Capacitors Ⅱ 599
19.3 THE EMITTER FOLLOWER—MAXIMUM VOLTAGE SWING 601
Example 19.5 Emitter Follower—Maximum Swing 601
19.4 CLASS A POWER CONSIDERATIONS 603
Example 19.6 Power Calculations for the Class A Amplifier 605
19.5 TRANSFORMER COUPLING 607
Analysis of the Transformer-Coupled Amplifier 608
Power Calculations 610
Example 19.7 Transformer-Coupled Class A Amplifier 611
19.6 THE CLASS B AMPLIFIER 612
Operation 612
Power Considerations 614
Example 19.8 Class B Maximum Power Calculations 616
Example 19.9 Class B Power Calculations 617
Distortion in the Class B Amplifier 618
19.7 PUSH-PULL AMPLIFIER BIASING 619
Example 19.10 Class B Biasing 620
Diode Biasing 621
Single-Supply Biasing 622
Example 19.11 Single-Supply Diode Biasing 622
The Bridge Amplifier and Phase Splitter 623
19.8 TROUBLESHOOTING 624
Short Circuit Failures 625
Example 19.12 Q2 Short Failures 626
Open Circuit Failures 626
PART 3 FIELD EFFECT TRANSISTORS (FET) 637
20 The Field Effect Transistor 638
20.1 INTRODUCTION 640
20.2 THE JUNCTION FIELD EFFECT TRANSISTOR (JFET) 641
JFET Operating States 644
Example 20.1 Determining the Pinch-Off Voltage 644
BJT SATURATION Region—JFET OHMIC Region 645
Example 20.2 The OHMIC Region 646
20.3 ACTIVE REGION DRAIN CURRENT VS.GATE VOLTAGE (ID-VGS) 647
The ID-VGs Curve 647
Example 20.3 Constructing the ID-VGS Curve 648
The CUT-OFF, PINCH-OFF Confusion 649
20.4 BASIC N-CHANNEL JFET BIASING 650
Example 20.4 N-Channel JFET Biasing 651
Example 20.5 The OHMIC Region 652
20.5 SINGLE-SOURCE JFET BIASING (GRAPHICAL) 653
Determining the Q-Point 653
Example 20.6 Graphical Bias Calculations 655
But I Can’t Find the JFET Ⅰ-Ⅴ Curve! 656
Example 20.7 Constructing the JFET Ⅰ-V Curve 657
20.6 SINGLE-SOURCE JFET BIASING (ANALYTICAL) 657
Example 20.8 Analytical Bias Calculation 658
20.7 VOLTAGE DIVIDER BIASING 659
Example 20.9 Voltage Divider Biasing 661
Analytical Calculation of Bias Levels 661
Example 20.10 Voltage Divider Biasing—Analytical Calculation 662
The Universal JFET Ⅰ-V Curve 662
20.8 THE P-CHANNEL JFET 663
Finding Bias Values 663
Example 20.11 P-Channel Biasing (VG = OV) 664
Example 20.12 Voltage Divider P-Channel Biasing 665
Analytical Calculations 667
Example 20.13 Analytical Bias Calculation (VG = OV) 667
Example 20.14 Voltage Divider Biasing—Analytical 668
20.9 JFET DATA SHEETS AND COMPUTER MODELS 668
JFET Specifications 670
JFET Computer Model 670
Example 20.15 Data Sheet Parameters and Computer Model Parameters 671
20.10 TROUBLESHOOTING THE JFET 672
Out-of-Circuit Tests 672
DC Troubleshooting of JFET Circuits 673
Example 20.16 DC Troubleshooting 674
21 The MOSFET 682
21.1 INTRODUCTION 684
21.2 THE N-CHANNEL D-MOSFET 684
Structure and Function 684
Example 21.1 Biasing the D-MOSFET, Depletion Region 686
Example 21.2 Biasing the D-MOSFET, Enhancement Region 687
Example 21.3 D-MOSFET Biasing, Analytical Method 688
The Almost Universal N-Channel D-MOSFET Ⅰ-V Curve 688
21.3 THE P-CHANNEL D-MOSFET 689
Structure and Function 689
Example 21.4 Biasing the P-Channel D-MOSFET 690
Example 21.5 P-Channel D-MOSFET Biasing, AnalyticalMethod 691
The Almost Universal P-Channel D-MOSFET Ⅰ-V Curve 692
21.4 THE N-CHANNEL E-MOSFET 692
Structure and Function 692
Example 21.6 N-Channel E-MOSFET Biasing 693
Analytical N-Channel E-MOSFET Biasing 694
Example 21.7 N-Channel E-MOSFET Biasing, Analytical Method 695
The Almost-Universal N-Channel E-MOSFET Ⅰ-V Curve 695
21.5 THE P-CHANNEL E-MOSFET 696
Structure and Function 696
Example 21.8 P-Channel E-MOSFET Biasing 696
Analytical P-Channel E-MOSFET Biasing 697
Example 21.9 P-Channel E-MOSFET Biasing, Analytical Method 698
The Almost Universal P-Channel E-MOSFET Ⅰ-V Curve 698
21.6 MOSFET DATA SHEETS AND COMPUTER MODELS 699
Data Sheets 699
21.7 THE COMPLEMENTARY MOSFET (CMOS)—AN INVERTER 703
21.8 OTHER MOSFETs 704
Power FETs 705
Dual-Gate MOSFETs 705
The MESFET 705
21.9 DC TROUBLESHOOTING MOSFET CIRCUITS 705
DC Troubleshooting the D-MOSFET 705
Open Failures 706
Short Failures 707
DC Troubleshooting the E-MOSFET 707
22FET AC Behavior and Applications 716
22.1 INTRODUCTION 718
22.2 FET AC MODEL 718
Determining gm for the JFET and D-MOSFET 719
Example 22.1 Finding gm for the JFET 720
Determining gm for the E-MOSFET 720
Example 22.2 Finding gm for the E-MOSFET 721
FET Data Sheets and AC Parameters 721
FET OHMIC Region Resistance 724
22.3 THE COMMON-SOURCE FET AMPLIFIER 725
Common Source Box Model Parameters 725
Example 22.3 The Common-Source Amplifier 726
22.4 ADDITIONAL FET CIRCUITS 728
Example 22.4 The FET Follower 729
22.5 FET-BJT CIRCUITS 731
22.6 THE VOLTAGE VARIABLE RESISTOR 732
Resistance of FET 733
Example 22.5 The FET as a Voltage Variable Resistor 733
Automatic Gain Control (AGC) 734
22.7 CMOS LOGIC CIRCUITS 735
Inverter 735
NAND Gate 736
NOR Gate 737
Special Topic FET Modeling 739
BJT Models 739
FET Models 740
PART 4 THE OPERATIONAL AMPLIFIERS 745
23 The Operational Amplifier(OP-AMP) 746
23.1 INTRODUCTION 748
23.2 THE OPERATIONAL AMPLIFIER (OP-AMP) 748
23.3 NEGATIVE FEEDBACK 750
Talking Around the Loop 751
The General Negative Feedback Amplifier 753
Example 23.1 Closed-Loop Gain 754
High Forward Gain 755
23.4 THE NON-INVERTING AMPLIFIER—TALKING AROUND THE LOOP 756
The Unity-Gain Amplifier (Buffer Amplifier) 756
Example 23.2 The Unity-Gain (Buffer) Amplifier 757
The Non-Inverting Amplifier 758
Example 23.3 The Non-Inverting Amplifier 759
Example 23.4 Non-Inverting Amplifier Design 760
23.5 THE INVERTING AMPLIFIER—TALKING AROUND THE LOOP 760
Example 23.5 The Inverting Amplifier 762
Example 23.6 The Inverting Amplifier, Design 762
23.6 THE IDEAL OP-AMP 763
Non-Inverting Amplifier 764
Example 23.7 The Non-Inverting Amplifier 765
Inverting Amplifier 766
Example 23.8 The Inverting Op-Amp Amplifier 767
23.7 THE REAL OP-AMP 768
Input Bias Current 769
Example 23.9 The Non-Inverting Amplifier 770
Input Offset Voltage 771
Bandwidth (Gain-Bandwidth Product) 771
Example 23.10 Bandwidth and Gain-Bandwidth Product 772
Rise Time and Slew Rate 772
Op-Amp Data Sheets 773
23.8 INSTRUMENTATION AMPLIFIERS 776
23.9 TROUBLESHOOTING OP-AMP CIRCUITS 778
Example 23.11 Op-Amp Troubleshooting 778
24 Operational Amplifier Circuits 788
24.1 INTRODUCTION 790
Non-Inverting Amplifier 790
Unity-Gain Buffer Amplifier 790
Inverting Amplifier 791
Op-Amp Analysis Procedure 792
Troubleshooting 792
24.2 SUMMING AMPLIFIERS 792
Inverting Summer 792
Example 24.1 The Inverting Summer 794
Example 24.2 Digital-to-Analog Converter (DAC) 795
Inverting Amplifier with Buffers 796
Non-Inverting Summer 796
Example 24.3 Non-Inverting Amplifier 797
Example 24.4 Non-Inverting Summing Amplifier 798
Troubleshooting 799
24.3 DIFFERENCE (DIFFERENTIAL) AMPLIFIER 800
Differential Amplifier 801
The Bridge Amplifier 802
Example 24.5 Bridge Amplifier 802
Troubleshooting 803
24.4 DIFFERENTIATION AND INTEGRATION 804
Differentiation 804
A Note of Caution 806
Example 24.6 Differentiation 806
25 Non-Linear Operational Amplifier Circuits 802
Integration 807
Example 24.7 Op-Amp Integration 808
Troubleshooting 809
24.5 IMPROVED VOLTAGE REGULATION 809
Example 24.8 Buffered Zener with Voltage Divider 810
Troubleshooting 811
25.1 INTRODUCTION 822
25.2 RECTIFIERS 823
Simple Inverting Rectifier 823
Example 25.1 Simple Inverting Rectifier 824
Precision Rectifiers 824
Non-Inverting Precision Rectifier 824
Example 25.2 Non-Inverting Rectifier 825
Inverting Precision Rectifier 826
Example 25.3 Inverting Precision Rectifier 827
Troubleshooting 828
25.3 LIMITERS 829
Op-Amp Limiter Circuit 829
Example 25.4 Op-Amp Limiter 830
Troubleshooting 830
25.4 ZERO-CROSSING DETECTOR 831
Example 25.5 Zero-Crossing Detector 833
25.5 COMPARATORS LEVEL DETECTORS) 833
The Non-Inverting Comparator 834
Example 25.6 Non-Inverting Comparator 834
Voltage Divider Reference Voltage for Comparator 835
The Inverting Comparator 835
Example 25.7 Voltage Level Indicator 835
Troubleshooting 837
25.6 SCHMITT TRIGGER 837
Positive Feedback 837
Example 25.8 The Schmitt Trigger 839
Troubleshooting 841
PART 5 ADVANCED TOPICS RESPONSE AND FILTERS 849
26 Frequency Response 850
26.1 INTRODUCTION 852
26.2 THE GAIN RESPONSE 853
Amplifier Gain 853
Bandwidth 853
Example 26.1 Half-Power Frequencies—Band-Pass Response 855
Example 26.2 Half-Power Frequency—Low-Pass Response 855
Example 26.3 Half-Power Frequency—High-Pass Response 856
26.3 THE BODE GAIN PLOT 857
Example 26.4 Log f Scale—Decades 858
Example 26.5 Log f Scale—Octaves 858
Example 26.6 3-dB Frequencies—Band-Pass Response 860
Example 26.7 3-dB Frequency—Low-Pass Response 861
Example 26.8 3-dB Frequency—High-Pass Response 861
26.4 LOW-FREQUENCY RESPONSE—COUPLING CAPACITORS 862
Capacitor Reactance 863
The 3-dB Frequency 864
Example 26.9 Simple RC Circuit 864
Two-Resistor Circuit 865
Example 26.10 Two-Resistor, Single Capacitor Circuit 865
The Box Model 866
Example 26.11 Common-Emitter Amplifier 867
Example 26.12 Common-Source Amplifier 868
Op-Amp Amplifiers 870
Example 26.13 Inverting Op-Amp AC Amplifier 870
Example 26.14 Non-Inverting Op-Amp AC Amplifier 871
26.5 LOW-FREQUENCY RESPONSE—BYPASS CAPACITORS 872
Example 26.15 Source Bypass Capacitor 874
26.6 HIGH-FREQUENCY RESPONSE—THE MILLER EFFECT 875
Amplifiers with Bypass Capacitors 876
The Miller Capacitance 877
Example 26.16 Complete Common-Emitter Frequency Response 879
Example 26.17 Complete Common-Source Frequency Response 880
Amplifiers without Bypass Capacitors 882
26.7 MULTISTAGE AMPLIFIERS 883
Common Emitter-to-Common Emitter (CE-CE) 883
Emitter Follower-to-Common Emitter (EF-CE) 883
Cascode Amplifier (Common Base-to-Common Emitter) 885
26.8 TRANSISTOR DATA SHEETS 886
BJT Data Sheet 886
Example 26.18 BJT High-Frequency Parameters 888
JFET Data Sheet 888
26.9 OP-AMP FREQUENCY RESPONSE 890
The Gain-Bandwidth Product 891
27 Active Filters 898
27.1 INTRODUCTION 900
27.2 Low-PASS FILTERS 901
The Ideal Low-Pass Filter 901
The Passive First-Order Low-Pass Filter 902
Example 27.1 First-Order Passive RC Filter 903
27.3 THE Low-PAss ACTIVE FILTER 904
First-Order Filters 904
Example 27.2 First-Order Low-Pass Active Filter 905
Second-Order Filters 906
Example 27.3 Sallen-Key Filter 907
27.4 THE HIGH-PASS ACTIVE FILTER 908
First-Order Filters 909
Example 27.4 First-Order High-Pass Active Filter 910
Second-Order Filters 911
Example 27.5 Sallen-Key High-Pass Filter 912
27.5 THE BAND-PASS ACTIVE FILTER 913
Relating fL and fH to BW and fo 914
High Pass-Low Pass Combination 915
Example 27.6 High Pass-Low Pass Combination 916
Sallen-Key Band-Pass Filter 917
Example 27.7 Sallen-Key Band-Pass Filter 919
27.6 HIGHER ORDER FILTERS 920
27.7 TROUBLESHOOTING ACTIVE FILTERS 921
Low-Pass Active Filter 921
High-Pass Active Filter 922
Band-Pass Active Filter 923
Example 27.8 Troubleshooting the Low-Pass Filter 923
28 Feedback Amplifiers 932
28.1 INTRODUCTION 934
28.2 NEGATIVE FEEDBACK BASICS 934
Terms and Formulas 935
Example 28.1 Closed-Loop Gain 935
Amplifier Parameter Variations and Non-Linearities 936
28.3 POSITIVE FEEDBACK BASICS 937
Stable Response 938
Sustained Pulse 939
Unstable Response 940
Example 28.2 Positive Feedback 940
28.4 STABILITY OF NEGATIVE FEEDBACK AMPLIFIERS 941
Example 28.3 Phase Angle and Time Delay 942
28.5 VOLTAGE FEEDBACK 945
Four Feedback Possibilities 945
Example 28.4 Feedback Analysis of Non-Inverting Amplifier 946
BJT Feedback Analysis 947
Example 28.5 BJT Voltage Out-Voltage Feedback Amplifier 948
28.6 VOLTAGE OUT-CURRENT FEEDBACK 948
Example 28.6 Voltage Out-Current Feedback Amplifier 951
28.7 INPUT AND OUTPUT RESISTANCE—VOLTAGE FEEDBACK 952
System Gain 952
Input Resistance 953
Output Resistance 954
Example 28.7 Input and Output Resistance—Voltage Feedback 954
28.8 INPUT AND OUTPUT RESISTANCE—CURRENT FEEDBACK 955
System Gain 955
Input Resistance 956
Output Resistance 957
Example 28.8 Input and Output Resistance—Current Feedback 957
How Do I Know if a Transistor Amplifier Is Voltage or Current Feedback? 958
28.9 CURRENT-OUT FEEDBACK AMPLIFIERS 958
Current Out-Current Feedback Amplifier 959
Current Out-Voltage Feedback Amplifier 960
28.10 TROUBLESHOOTING 961
Loosing the Feedback Loop (RF Fails Open) 961
Degradation in the Forward-Path Amplifier 962
A Note of Caution 963
29 Signal Generators 972
29.1 INTRODUCTION 974
29.2 THE CLASS C TUNED AMPLIFIER 974
Example 29.1 The LC Tuned Circuit 976
Example 29.2 Designing the LC Tuned Circuit 976
The Class C Tuned Amplifier 977
29.3 LC OSCILLATORS 979
The Colpitts Oscillator 979
Example 29.3 The Colpitts Oscillator 980
Example 29.4 Colpitts Design 981
The Hartley Oscillator 982
Example 29.5 The Hartley Oscillator 982
Example 29.6 Hartley Design 983
Crystal Oscillator 984
Variable Frequency Oscillators 984
29.4 RC OSCILLATORS 985
The RC Phase Shift Oscillator 986
Example 29.7 The RC Phase Shift Oscillator 987
The Wien Bridge Oscillator 987
Example 29.8 The Wien Bridge Oscillator 989
29.5 SQUARE WAVE GENERATOR 989
Example 29.9 Pulse Wave Parameters 990
Example 29.10 Square Wave Generator 993
Example 29.11 Designing a Square Wave Generator 993
29.6 TRIANGLE WAVE GENERATOR 994
Example 29.12 Ramp Generator 994
Example 29.13 Triangle Wave Generator 995
Triangle Wave Generator 996
The Sawtooth Generator 996
29.7 INTEGRATED CIRCUIT SIGNAL GENERATORS 997
The 555 Pulse Generator 997
Example 29.14 The 555 Astable Multivibrator 998
Function Generator Integrated Circuit 998
29.8 TROUBLESHOOTING OSCILLATORS 1000
Example 29.15 Troubleshooting LC Oscillators 1000
Example 29.16 Troubleshooting RC Phase Shift Oscillators 1001
30 ElectronicSwitches(Thyristors) 1008
30.1 INTRODUCTION 1010
30.2 THE FOUR-LAYER DIODE AND THE DIAC 1011
The Four-Layer Diode 1011
Example 30.1 The Four-Layer Diode Relaxation Oscillator 1013
The DIAC 1013
30.3 THE SILICON-CONTROLLED RECTIFIER (SCR) 1014
Turning the SCR OFF 1016
Example 30.2 SCR Indicator Circuit 1016
Example 30.3 SCR Relaxation Oscillator 1017
False Triggering 1017
Example 30.4 Four-Layer Diode Triggering of SCR 1018
30.4 AC SCR APPLICATIONS 1019
DC Motor Control 1019
Example 30.5 Conduction Angle and DC Value 1020
Example 30.6 SCR with Four-Layer Diode 1021
RC Time-Delay Circuit 1023
Example 30.7 RC Triggering Circuit 1024
30.5 THE TRIAC 1025
30.6 THE UNIJUNCTION TRANSISTOR (UJT) 1027
UJT Basics 1027
Example 30.8 UJT Vp Determination 1029
Example 30.9 UJT Relaxation Oscillator 1031
The Programmable Unijunction Transistor (PUT) 1031
30.7 ADDITIONAL THYRISTORS 1032
The Gate Turn-Off Switch (GTO) 1033
The Silicon Bilateral Switch (SBS) 1033
The Silicon-Controlled Switch (SCS) 1033
Thyristor Optoisolators 1034