《Fourier Series and Boundary Value Problems》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:
  • 出 版 社:
  • 出版年份:2222
  • ISBN:
  • 页数:206 页
图书介绍:

CHAPTER Ⅰ INTRODUCTION 1

1.The Two Related Problems 1

2.Linear Differential Equations 2

3.Infinite Series of Solutions 5

4.Boundary Value Problems 6

CHAPTER Ⅱ PARTIAL DIFFERENTIAL EQUATIONS OF PHYSICS 10

5.Gravitational Potential 10

6.Laplace’s Equation 12

7.Cylindrical and Spherical Coordinates 13

8.The Flux of Heat 15

9.The Heat Equation 17

10.Other Cases of the Heat Equation 19

11.The Equation of the Vibrating String 21

12.Other Equations.Types 23

13.A Problem in Vibrations of a String 24

14.Example.The Plucked String 28

15.The Fourier Sine Series 29

16.Imaginary Exponential Functions 31

CHAPTER Ⅲ ORTHOGONAL SETS OF FUNCTIONS 34

17.Inner Product of Two Vectors.Orthogonality 34

18.Orthonormal Sets of Vectors 35

19.Functions as Vectors.Orthogonality 37

20.Generalized Fourier Series 39

21.Approximation in the Mean 40

22.Closed and Complete Systems 42

23.Other Types of Orthogonality 44

24.Orthogonal Functions Generated by Differential Equations 46

25.Orthogonality of the Characteristic Functions 49

CHAPTER Ⅳ FOURIER SERIES 53

26.Definition 53

27.Periodicity of the Function.Example 55

28.Fourier Sine Series.Cosine Series 57

29.Illustration 59

30.Other Forms of Fourier Series 61

31.Sectionally Continuous Functions 64

32.Preliminary Theory 67

33.A Fourier Theorem 70

34.Diacussion of the Theorem 72

35.The Orthonormal Trigonometric Functions 74

CHAPTER Ⅴ FURTHER PROPERTIES OF FOURIER SERIES;FOURIER INTEGRALS 78

36.Differentiation of Fourier Series 78

37.Integration of Fourier Series 80

38.Uniform Convergence 82

39.Concerning More General Conditions 85

40.The Fourier Integral 88

41.Other Forms of the Fourier Integral 91

CHAPTER Ⅵ SOLUTION OF BOUNDARY VALUE PROBLEMS BY THE USE OF FOURIER SERIES AND INTEGRALS 94

42.Formal and Rigorous Solutions 94

43.The Vibrating String 95

44.Variations of the Problem 98

45.Temperatures in a Slab with Faces at Temperature Zero 102

46.The Above Solution Established.Uniqueness 105

47.Variations of the Problem of Temperatures in a Slab 108

48.Temperatures in a Sphere 112

49.Steady Temperatures in a Rectangular Plate 114

50.Displacements in a Membrane.Fourier Series in Two Variables 116

51.Temperatures in an Infinite Bar.Application of Fourier Integrals 120

52.Temperatures in a Semi-infinite Bar 122

53.Further Applications of the Series and Integrals 123

CHAPTER Ⅶ UNIQUENESS OF SOLUTIONS 127

54.Introduction 127

55.Abel’s Test for Uniform Convergence of Series 127

56.Uniqueness Theorems for Temperature Problems 130

57.Example 133

58.Uniqueaess of the Potential Function 134

59.An Application 137

CHAPTER Ⅷ BESSEL FUNCTIONS AND APPLICATIONS 143

60.Derivation of the Functions Jn(x) 143

61.The Functions of Integral Orders 145

62.Differentiation and Recursion Formulas 148

63.Integral Forms of Jn(x) 149

64.The Zeros of Jn(x) 153

65.The Orthogonality of Bessel Functions 157

66.The Ortbonormal Functions 161

67.Fourier-Bessel Expansions of Functions 162

68.Temperatures in an Infinite Cylinder 165

69.Radiation at the Surface of the Cylinder 168

70.The Vibration of a Circular Membrane 170

CHAPTER Ⅸ LEGENDRE POLYNOMIALS AND APPLICATIONS 175

71.Derivation of the Legendre Polynomials 175

72.Other Legendre Functions 177

73.Generating Functions for Pn(x) 179

74.The Legendre Coefficients 181

75.The Orthogonality of Pn(x).Norms 183

76.The Functions Pn(x) as a Complete Orthogonal Set 185

77.The Expansion of xm 187

78.Derivatives of the Polynomials 189

79.An Expansion Theorem 191

80.The Potential about a Spherical Surface 193

81.The Gravitational Potential Due to a Circular Plate 198

INDEX 203