Chapter 1 First Law 1
1.1 System and Surroundings 1
1.2 Energy Transfer 2
1.3 Energy of a System 4
1.4 Energy as a State Function 5
1.5 Work 5
1.6 The Closed System 7
1.7 Notation 8
1.8 Intensive and Extensive Properties 9
1.9 The Open System 10
1.10 Enthalpy 11
1.11 Steady State 11
1.12 Heat Capacity at Constant Volume 12
1.13 Heat Capacity at Constant Pressure 13
1.14 Adiabatic Flow Through a Valve: Joule-Thomson Expansion 16
1.15 Equations of State 17
1.16 Nonideal Gases 22
1.17 Adiabatic Compression or Expansion 26
1.18 Enthalpies of Formation 29
1.19 Enthalpy Changes in Chemical Reactions 31
1.20 Adiabatic Temperature Change in Chemical Reactions 34
References 38
Problems 38
Chapter 2 Second Law 45
2.1 Entropy as a State Function 46
2.2 Entropy Not Conserved 49
2.3 Open System Entropy Balance 50
2.4 Adiabatic, Reversible, Steady State System 50
2.5 Heat Engines 51
2.6 Diagrammatic Representation 54
2.7 Refrigerators 55
2.8 Heat Pumps 57
2.9 Entropy Changes 57
2.10 Entropy Changes in Chemical Reactions and the Third Law 60
References 62
Problems 62
Chapter 3 Property Relationships 67
3.1 The Property Relation 69
3.2 The Functions F and G 70
3.3 Chemical Potentials 71
3.4 Partial Molar Quantities 73
3.5 Property Relations Derived from U, H, F, and G 75
3.6 Ideal Gas 78
3.7 Entropy of Mixing 78
3.8 Heat Capacity 80
3.9 Variation of Heat Capacity 81
3.10 Isentropic Pressure-Temperature Relationship 82
3.11 Isentropic Compression of Solids 83
3.12 Thermoelastic Effect 84
3.13 Compressibility 87
3.14 Magnetic Effects 89
References 93
Problems 93
Chapter 4 Equilibrium 97
4.1 Condition of Equilibrium 98
4.2 Barometric Equation 100
4.3 Phase Equilibria 101
4.4 Special Case: Closed System, Constant Volume 103
4.5 First-Order Transitions: Variation of Equilibrium Pressure with Temperature 104
4.6 Clapeyron Equation in Vapor Equilibria 107
4.7 Variation of Vapor Pressure of a Condensed Phase with Total Applied Pressure 109
4.8 Variation of Vapor Pressure with Particle Size 111
4.9 Second-Order Transitions 112
4.10 Superconductivity: An Example 114
References 116
Problems 116
Chapter 5 Chemical Equilibrium 119
5.1 Thermodynamic Activity 119
5.2 Chemical Equilibrium 122
5.3 Gaseous Equilibria 123
5.4 Solid-Vapor Equilibria 125
5.5 Sources of Information on ?G° 127
5.6 Ellingham Diagrams 130
5.7 Variation of Equilibrium Constant with Temperature 135
5.8 Gases Dissolved in Metals (Sievert's Law) 138
5.9 Chemical Equilibrium and Adiabatic Flame Temperatures 139
References 144
Problems 144
Chapter 6 Electrochemistry 149
6.1 Electrochemical Cell 150
6.2 Nomenclature 151
6.3 Calculation of Cell Voltage 152
6.4 Direction of Reaction 153
6.5 Half-Cell Reactions 154
6.6 Variation of Voltage with Concentration: Nernst Equation 156
6.7 Pourbaix Diagrams 156
6.8 Concentration Cells 159
6.9 Oxygen Pressure Determination 161
6.10 Temperature Dependence of Voltage 162
6.11 Electrochemical Potential 162
References 164
Problems 164
Chapter 7 Solutions 169
7.1 Thermodynamic Activity 169
7.2 Partial Molar Quantities 171
7.3 Relative Partial Molar Quantities 173
7.4 Entropy of Mixing: Ideal Solution 174
7.5 Enthalpy of Mixing: Ideal Solution 174
7.6 Graphical Representation 175
7.7 Nonideal Solutions 178
7.8 Gibbs-Duhem Relation 181
7.9 Dilute Solutions and Colligative Properties 183
7.10 Integrating the Gibbs-Duhem Equation 184
7.11 Regular Solutions 186
7.12 Regular Solutions: Atomistic Interpretation 188
7.13 Polymer Solutions 190
7.14 Osmotic Pressure 192
References 195
Problems 195
Chapter 8 Phase Rule 199
8.1 Phases 199
8.2 Components 200
8.3 Specifying a System 200
8.4 Equilibrium Conditions 201
8.5 Gibbs Phase Rule 201
8.6 One-Component System 201
8.7 Examples 202
8.8 Phase Rule for Condensed Systems 204
Problems 205
Chapter 9 Phase Diagrams 207
9.1 Freezing Point Depression 208
9.2 The Lever Rule 211
9.3 Simple Eutectic Diagram 213
9.4 Cooling Curves 214
9.5 Complete Miscibility 216
9.6 Immiscibility 220
9.7 Spinodal Points 222
9.8 Peritectic Phase Diagrams 224
9.9 Compounds 225
9.10 Ternary Diagrams 225
References 234
Problems 234
Chapter 10 Statistical Thermodynamics 245
10.1 Average Velocity of Gas Molecules 246
10.2 Macrostates and Microstates 249
10.3 Isolated Systems and the Boltzmann Hypothesis 252
10.4 The Third Law 254
10.5 Systems at Constant Temperature 255
10.6 Information and Entropy 256
10.7 Boltzmann Distribution 258
10.8 Degeneracy 262
10.9 Partition Function 263
10.10 Distinguishability of Particles 264
10.11 Ideal Gas 265
10.12 Maxwell-Boltzmann Distribution: Ideal Gas 267
10.13 Fermi-Dirac Distribution 270
10.14 Heat Capacity of Solids 274
10.15 Molecular Weight Distribution in Polymers 278
10.16 Entropy of Mixing of Polymer Solutions 284
References 287
Appendix 10.A: Proof that β = 1/kT 287
Problems 288
Appendix Background 293
A.1 Length 294
A.2 Mass and Amount of Material 294
A.3 Time 294
A.4 Electric Current 295
A.5 Temperature 295
A.6 Force 296
A.7 Pressure 296
A.8 Volume 296
A.9 Energy 296
A.10 Power 297
A.11 Composition 297
A.12 Checking Units 298
A.13 Logarithms 299
A.14 Differentials 300
A.15 Partial Derivatives 300
A.16 Total Differential 301
A.17 Factorials 301
A.18 Homogeneous Functions 302
A.19 Lagrange Method of Undetermined Multipliers 302
Exercises in Unit Conversions 306
Index 309