《complex analysis》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:
  • 出 版 社:
  • 出版年份:2222
  • ISBN:
  • 页数:0 页
图书介绍:

PART ONE BASIC THEORY 3

Chapter Ⅰ Complex Numbers and Functions 3

1 Definition 3

2 Polar form 8

3 Complex valued functions 12

4 Limits and compact sets 17

5 Complex differentiability 27

6 The Cauchy-Riemann equations 31

Chapter Ⅱ Power Series 35

1 Formal power series 35

2 Convergent power series 45

3 Relations between formal and convergent series 57

Sums and products 57

Quotients 60

Composition of series 62

4 Holomorphic functions 64

5 The inverse and open mapping theorems 67

6 The local maximum modulus principle 73

7 Differentiation of power series 75

Chapter Ⅲ Cauchy’s Theorem, First Part 81

1 Analytic functions on connected sets 81

2 Integrals over paths 88

3 Local primitive for an analytic function 96

4 Another description of the integral along a path 102

5 The homotopy form of Cauchy’s theorem 106

6 Existence of global primitives.Definition of the logarithm 108

Chapter Ⅳ Cauchy’s Theorem, Second Part 113

1 The winding number 113

2 Statement of Cauchy’s theorem 117

3 Artin’s proof 125

Chapter Ⅴ Applications of Cauchy’s Integral Formula 133

1 Cauchy’s integral formula on a disc 133

2 Laurent series 139

3 Isolated singularities 143

4 Dixon’s proof of Cauchy’s theorem 148

Chapter Ⅵ Calculus of Residues 151

1 The residue formula 151

2 Evaluation of definite integrals 167

Fourier transforms, 169

Trigonometric integrals 172

Mellin transforms 174

Chapter Ⅶ Conformal Mappings 184

1 Schwarz lemma 184

2 Analytic automorphisms of the disc 185

3 The upper half plane 189

4 Other examples 190

Chapter Ⅷ Harmonic Functions 197

1 Definition 197

2 Examples 205

3 Construction of harmonic functions 212

4 Existence of associated analytic function 216

PART TWO VARIOUS ANALYTIC TOPICS 221

Chapter Ⅸ Applications of the Maximum Modulus Principle 221

1 The effect of zeros, Jensen-Schwarz lemma 221

2 The effect of small derivatives 226

3 Entire functions with rational values 228

4 Phragmen-Lindelof and Hadamard theorems 234

5 Bounds by the real part, Borel-Caratheodory theorem 238

Chapter Ⅹ Entire and Meromorphic Functions 241

1 Infinite products 241

2 Weierstrass products 244

3 Functions of finite order 250

4 Meromorphic functions, Mittag-Leffler theorem 252

Chapter Ⅺ Elliptic Functions 255

1 The Liouville theorems 255

2 The Weierstrass function 258

3 The addition theorem 262

4 The sigma and zeta functions 265

Chapter Ⅻ Differentiating Under an Integral 270

1 The differentiation lemma 270

2 The gamma function 273

Proof of Stirling’s formula 277

Chapter ⅩⅢ Analytic Continuation 287

1 Schwarz reflection 287

2 Continuation along a path 292

Chapter ⅩⅣ The Riemann Mapping Theorem 299

1 Statement and application to Picard’s theorem 299

2 Compact sets in function spaces 303

3 Proof of the Riemann mapping theorem 306

4 Behavior at the boundary 311

Index 319