《凝聚态物理 英文 影印版》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:周游著
  • 出 版 社:
  • 出版年份:2014
  • ISBN:
  • 页数:0 页
图书介绍:

CHAPTER 1 Basic Properties of Crystals 1

1.1 Crystal Lattices 2

1.1.1 Primitive Cell 3

1.1.2 UnitCell 3

1.1.3 Wigner-SeitzCell 3

1.1.4 Lattice Point Group 3

1.2 Bravais Lattices in Two and Three Dimensions 4

1.2.1 Simple Cubic (sc)Lattice 4

1.2.2 Lattice Constants 5

1.2.3 Coordination Numbers 5

1.2.4 Body-Centered Cubic(bcc)Lattice 5

1.2.5 Face-Centered Cubic(fcc)Lattice 7

1.2.6 Other Bravais Lattices 9

1.3 Lattice Planes and Miller Indices 11

1.4 Bravais Lattices and Crystal Structures 13

1.4.1 Crystal Structure 13

1.4.2 Lattice with a Basis 13

1.4.3 Packing Fraction 14

1.5 Crystal Derects and Surface Effects 14

1.5.1 Crystal Defects 14

1.5.2 Surface Effects 14

1.6 Some Simple Crystal Structures 15

1.6.1 Sodium Chloride Structure 15

1.6.2 Cesium Chloride Structure 15

1.6.3 Diamond Structure 16

1.6.4 Zincblende Structure 17

1.6.5 Hexagonal Close-Packed(hcp)Structure 17

1.7 Bragg Diffraction 19

1.8 Laue Method 20

1.9 Reciprocal Lattice 21

1.9.1 Definition 21

1.9.2 Properties of the Reciprocal Lattice 22

1.9.3 Alternative Formulation of the Laue Condition 25

1.10 Brillouin Zones 27

1.10.1 Definition 27

1.10.2 One-Dimensional Lattice 28

1.10.3 Two-Dimensional Square Lattice 28

1.10.4 bcc Lattice 29

1.10 5 fcc Lattice 30

1.11 Diffraction by a Crystal Lattice with a Basis 31

1.11.1 Theory 31

1.11.2 Geornetrical Structure Factor 32

1.11.3 Application to bcc Lattice 32

1.11.4 Application to fcc Lattice 33

1.11.5 The Atomic Scattering Factor or Form Factor 33

Problems 34

References 35

CHAPTER 2 Phonons and Lattice Vibrations 37

2.1 Lattice Dynamics 37

2.1.1 Theorv 37

2.1.2 Normal Modes of a One-Dimensional Monoatomic Lattice 41

2.1.3 Normal Modes of a One-Dimensional Chain with a Basis 44

2.2 Lattice Specific Heat 48

2.2.1 Theory 48

2.2.2 The Debye Model of Specific Heat 49

2.2.3 The Einstein Model of Specific Heat 52

2.3 Second Quantization 53

2.3.1 Occupation Number Representation 53

2.3.2 Creation and Annihilation Operators 54

2.3.3 Field Operators and the Hamiltonian 58

2.4 Quantization of Lattice Waves 61

2.4.1 Formulation 61

2.4.2 Quantization of Lattice Waves 65

Problems 66

References 68

CHAPTER 3 Free Electron Model 71

3.1 The Classical(Drude)Model of a Metal 71

3.2 Sommerfeld Model 73

3.2.1 Introduction 73

3.2.2 Fermi Distribution Function 74

3.2.3 Density Operator 75

3.2.4 Free Electron Fermi Gas 77

3.2.5 Ground-State Energy of the Electron Gas 79

3.2.6 Density of Electron States 81

3.3 Fermi Energy and the Chemical Potential 82

3.4 Specific Heat of the Electron Gas 84

3.5 DC Electrical Conductivity 86

3.6 The Hall Effect 87

3.7 Failures of the Free Electron Model 89

Problems 90

References 93

CHAPTER 4 Nearly Free Electron Model 95

4.1 Electrons in a Weak Periodic Potential 96

4.1.1 Introduction 96

4.1.2 Plane Wave Solutions 97

4.2 Bloch Functions and Bloch Theorem 99

4.3 Reduced,Repeated(Periodic),and Extended Zone Schemes 99

4.3.1 Reduced Zone Scheme 100

4.3.2 Repeated Zone Scheme 100

4.3.3 Extended Zone Scheme 101

4.4 Band Index 101

4.5 Effective Hamiltonian 102

4.6 Proof of Bloch's Theorem from Translational Symmetry 103

4.7 Approximate Solution Near a Zone Boundary 105

4.8 Different Zone Schemes 109

4.8.1 Reduced Zone Scheme 109

4.8.2 Extended Zone Scheme 110

4.8.3 Periodic Zone Scheme 111

4.9 Elementary Band Theory of Solids 111

4.9.1 Introduction 111

4.9.2 Energy Bands in One Dimension 112

4.9.3 Number of States in a Band 112

4.10 Metals,Insulators,and Semiconductors 112

4.11 Brillouin Zones 117

4.12 Fermi Surface 119

4.12.1 Fermi Surface (in Two Dimensions) 119

4.12.2 Fermi Surface (in Three Dimensions) 121

4.12.3 Harrison's Method of Construction of the Fermi Surface 121

Problems 124

References 130

CHAPTER 5 Band-Structure Calculations 131

5.1 Introduction 131

5.2 Tight-Binding Approximation 131

5.3 LCAO Method 135

5.4 Wannier Functions 140

5.5 Cellular Method 142

5.6 Orthogonalized Plane-Wave(OPW)Method 145

5.7 Pseudopotentials 147

5.8 Muffin-Tin Potential 149

5.9 Augmented Plane-Wave(APW)Method 150

5.10 Green's Function (KKR)Method 152

5.11 Model Pseudopotentials 156

5.12 Empirical Pseudopotentials 157

5.13 First-Principles Pseudopotentials 158

Problems 160

References 163

CHAPTER 6 Static and Transport Properties of Solids 165

6.1 Band Picture 166

6.2 Bond Picture 167

6.3 Diamond Structure 168

6.4 Si and Ge 168

6.5 Zinc-Blende Semiconductors 170

6.6 Ionic Solids 172

6.7 Molecular Crystals 174

6.7.1 Molecular Solids 174

6.7.2 Hydrogen-Bonded Structures 174

6.8 Cohesion of Solids 174

6.8.1 Molecular Crystals:Noble Gases 174

6.8.2 Ionic Crystals 176

6.8.3 Covalent Crystals 177

6.8.4 Cohesion in Metals 178

6.9 The Semiclassical Model 179

6.10 Liouville's Theorem 182

6.11 Boltzmann Equation 183

6.12 Relaxation Time Approximation 184

6.13 Electrical Conductivity 186

6.14 Thermal Conductivity 187

6.15 Weak Scattering Theory of Conductivity 188

6.15.1 Relaxation Time and Scattering Probability 188

6.15.2 The Collision Term 188

6.15.3 Impurity Scattering 189

6.16 Resistivity Due to Scattering by Phonons 192

Problems 194

References 196

CHAPTER 7 Electron-Electron Interaction 199

7.1 Introduction 199

7.2 Hartree Approximation 200

7.3 Hartree-Fock Approximation 203

7.3.1 General Formulation 203

7.3.2 Hartree-Fock Theory for Jellium 204

7.4 Effect of Screening 207

7.4.1 General Formulation 207

7.4.2 Thomas-Fermi Approximation 208

7.4.3 Lindhard Theory of Screening 209

7.5 Friedel Sum Rule and Oscillations 214

7.6 Frequency and Wave-Number-Dependent Dielectric Constant 217

7.7 Mott Transition 222

7.8 Density Functional Theory 223

7.8.1 General Formulation 223

7.8.2 Local Density Approximation 224

7.9 Fermi Liquid Theory 225

7.9.1 Quasiparticles 225

7.9.2 Energy Functional 227

7.9.3 Fermi Liquid Parameters 230

7.10 Green's Function Method 232

7.10.1 General Formulation 232

7.10.2 Finite-Temperature Green's Function Formalism for Interacting Bloch Electrons 233

7.10.3 Exchange Self-Energy in the Band Model 234

Problems 235

References 241

CHAPTER 8 Dynamics of Bloch Electrons 243

8.1 Semiclassical Model 243

8.2 Velocity Operator 244

8.3 k.P Perturbation Theory 245

8.4 Quasiclassical Dynamics 246

8.5 Effective Mass 247

8.6 Bloch Electrons in External Fields 248

8.6.1 Time Evolution of Bloch Electrons in an Electric Field 250

8.6.2 Alternate Derivation for Bloch Functions in an External Electric and Magnetic Field 252

8.6.3 Motion in an Applied DC Field 253

8.7 Bloch Oscillations 254

8.8 Holes 255

8.9 Zener Breakdown(Approximate Method) 258

8.10 Rigorous Calculation of Zener Tunneling 261

8.11 Electron-Phonon Interaction 264

Problems 271

References 274

CHAPTER 9 Semiconductors 275

9.1 Introduction 275

9.2 Electrons and Holes 278

9.3 Electron and Hole Densities in Equilibrium 279

9.4 Intrinsic Semiconductors 283

9.5 Extrinsic Semiconductors 284

9.6 Doped Semiconductors 285

9.7 Statistics of Impurity Levels in Thermal Equilibrium 288

9.7.1 Donor Levels 288

9.7.2 Acceptor Levels 288

9.7.3 Doped Semiconductors 289

9.8 Diluted Magnetic Semiconductors 290

9.8.1 Introduction 290

9.8.2 Magnetization in Zero External Magnetic Field in DMS 291

9.8.3 Electron Paramagnetic Resonance Shift 291

9.8.4 ?.?Model 295

9.9 Zinc Oxide 296

9.10 Amorphous Semiconductors 296

9.10.1 Introduction 296

9.10.2 Linear Combination of Hybrids Model for Tetrahedral Semiconductors 297

Problems 300

References 303

CHAPTER 10 Electronics 305

10.1 Introduction 305

10.2 p-n Junction 306

10.2.1 Introduction 306

10.2.2 p-n Junction in Equilibrium 307

10.3 Rectification by a p-n Junction 311

10.3.1 Equilibrium Case 311

10.3.2 Nonequilibrium Case(V≠0) 313

10.4 Transistors 318

10.4.1 Bipolar Transistors 318

10.4.2 Field-Effect Transistor 319

10.4.3 Single-Electron Transistor 321

10.5 Integrated Circuits 325

10.6 Optoelectronic Devices 325

10.7 Graphene 329

10.8 Graphene-Based Electronics 332

Problems 333

References 336

CHAPTER 11 Spintronics 339

11.1 Introduction 339

11.2 Magnetoresistance 340

11.3 Giant Magnetoresistance 340

11.3.1 Metallic Multilayers 340

11.4 Mott's Theory of Spin-Dependent Scattering of Electrons 342

11.5 Camley-Barnas Model 345

11.6 CPP-GMR 348

11.6.1 Introduction 348

11.6.2 Theory of CPP-GMR of Multilayered Nanowires 350

11.7 MTJ,TMR,and MRAM 352

11.8 Spin Transfer Torques and Magnetic Switching 356

11.9 Spintronics with Semiconductors 357

11.9.1 Introduction 357

11.9.2 Theory of an FM-T-N Junction 358

11.9.3 Injection Coefficient 361

Problems 364

References 367

CHAPTER 12 Diamagnetism and Paramagnetism 369

12.1 Introduction 370

12.2 Atomic(or Ionic)Magnetic Susceptibilities 371

12.2.1 General Formulation 371

12.2.2 Larmor Diamagnetism 372

12.2.3 Hund's Rules 373

12.2.4 Van Vleck Paramagnetism 374

12.2.5 Landé g Factor 375

12.2.6 Curie's Law 377

12.3 Magnetic Susceptibility of Free Electrons in Metals 378

12.3.1 General Formulation 378

12.3.2 Landau Diamagnetism and Pauli Paramagnetism 380

12.3.3 De Haas-van Alphen Effect 383

12.4 Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids 388

12.4.1 Introduction 388

12.4.2 Equation of Motion in the Bloch Representation 388

12.4.3 Thermodynamic Potential 390

12.4.4 General Formula for X 390

12.4.5 Exchange Self-Energy in the Band Model 393

12.4.6 Exchange Enhancement of Xs 394

12.4.7 Exchange and Correlation Effects on Xo 395

12.4.8 Exchange and Correlation Effects on Xso 396

12.5 Quantum Hall Effect 396

12.5.1 Introduction 396

12.5.2 Two-Dimensional Electron Gas 396

12.5.3 Quantum Transport of a Two-Dimensional Electron Gas in a Strong Magnetic Field 397

12.5.4 Quantum Hall Effect from Gauge Invariance 400

12.6 Fractional Quantum Hall Effect 400

Problems 401

References 407

CHAPTER 13 Magnetic Ordering 409

13.1 Introduction 410

13.2 Magnetic Dipole Moments 411

13.3 Models for Ferromagnetism and Antiferromagnetism 412

13.3.1 Introduction 412

13.3.2 Heitler-London Approximation 412

13.3.3 Spin Hamiltonian 414

13.3.4 Heisenberg Model 416

13.3.5 Direct,Indirect,and Superexchange 416

13.3.6 Spin Waves in Ferromagnets:Magnons 417

13.3.7 Schwinger Representation 417

13.3.8 Application to the Heisenberg Hamiltonian 418

13.3.9 Spin Waves in Antiferromagnets 421

13.4 Ferromagnetism in Solids 422

13.4.1 Ferromagnetism Near the Curie Temperature 422

13.4.2 Comparison of Spin-Wave Theory with the Weiss Field Model 424

13.4.3 Ferromagnetic Domains 425

13.4.4 Hysteresis 426

13.4.5 Ising Model 427

13.5 Ferromagnetism in Transition Metals 427

13.5.1 Introduction 427

13.5.2 Stoner Model 428

13.5.3 Ferromagnetism in Fe,Co,and Ni from Stoner's Model and Kohn-Sham Equations 430

13.5.4 Free Electron Gas Model 431

13.5.5 Hubbard Model 433

13.6 Magnetization of Interacting Bloch Electrons 434

13.6.1 Introduction 434

13.6.2 Theory of Magnetization 434

13.6.3 The Quasiparticle Contribution to Magnetization 435

13.6.4 Contribution of Correlations to Magnetization 436

13.6.5 Single-Particle Spectrum and the Criteria for Ferromagnetic Ground State 437

13.7 The Kondo Effect 439

13.8 Anderson Model 439

13.9 The Magnetic Phase Transition 440

13.9.1 Introduction 440

13.9.2 The Order Parameter 441

13.9.3 Landau Theory of Second-Order Phase Transitions 441

Problems 443

References 448

CHAPTER 14 Superconductivity 451

14.1 Properties of Superconductors 452

14.1.1 Introduction 452

14.1.2 Type Ⅰ and Type Ⅱ Superconductors 453

14.1.3 Second-Order Phase Transition 454

14.1.4 Isotope Effect 454

14.1.5 Phase Diagram 454

14.2 Meissner-Ochsenfeld Effect 455

14.3 The London Equation 455

14.4 Ginzburg-Landau Theory 456

14.4.1 Order Parameter 456

14.4.2 Boundary Conditions 457

14.4.3 Coherence Length 457

14.4.4 London Penetration Depth 458

14.5 Flux Quantization 459

14.6 Josephson Effect 460

14.6.1 Two Superconductors Separated by an Oxide Layer 460

14.6.2 AC and DC Josephson Effects 462

14.7 Microscopic Theory of Superconductivity 462

14.7.1 Introduction 462

14.7.2 Quasi-Electrons 463

14.7.3 Cooper Pairs 464

14.7.4 BCS Theory 466

14.7.5 Ground State of the Superconducting Electron Gas 466

14.7.6 Excited States at T=0 469

14.7.7 Excited States at T≠0 470

14.8 Strong-Coupling Theory 472

14.8.1 Introduction 472

14.8.2 Upper Limit of the Critical Temperature,Tc 472

14.9 High-Temperature Superconductors 473

14.9.1 Introduction 473

14.9.2 Properties of Novel Superconductors(Cuprates) 474

14.9.3 Brief Review of s-,P-,and d-wave Pairing 474

14.9.4 Experimental Confirmation of d-wave Pairing 476

14.9.5 Search for a Theoretical Mechanism of High Tc Superconductors 481

Problems 481

References 485

CHAPTER 15 Heavy Fermions 487

15.1 Introduction 488

15.2 Kondo-Lattice,Mixed-Valence,and Heavy Fermions 490

15.2.1 Periodic Anderson and Kondo-Lattice Models 490

15.2.2 Mixed-Valence Compounds 492

15.2.3 Slave Boson Method 493

15.2.4 Cluster Calculations 494

15.3 Mean-Field Theories 498

15.3.1 The Local Impurity Self-Consistent Approximation 498

15.3.2 Application of LISA to Periodic Anderson Model 499

15.3.3 RKKY Interaction 500

15.3.4 Extended Dynamical Mean-field Theory 501

15.4 Fermi-Liquid Models 502

15.4.1 Heavy Fermi Liquids 502

15.4.2 Fractionalized Fermi Liquids 505

15.5 Metamagnetism in Heavy Fermions 506

15.6 Ce-and U-Based Superconducting Compounds 508

15.6.1 Ce-Based Compounds 508

15.6.2 U-Based Superconducting Compounds 509

15.7 Other Heavy-Fermion Superconductors 513

15.7.1 PrOs4Sb12 513

15.7.2 PuCoGa5 513

15.7.3 PuRhGa5 515

15.7.4 Comparison between Cu and Pu Containing High-Tc Superconductors 516

15.8 Theories of Heavy-Fermion Superconductivity 516

15.9 Kondo Insulators 516

15.9.1 Brief Review 516

15.9.2 Theory of Kondo Insulators 517

Problems 519

References 524

CHAPTER 16 Metallic Nanoclusters 527

16.1 Introduction 528

16.1.1 Nanoscience and Nanoclusters 528

16.1.2 Liquid Drop Model 528

16.1.3 Size and Surface/Volume Ratio 528

16.1.4 Geometric and Electronic Shell Structures 530

16.2 Electronic Shell Structure 531

16.2 1 Spherical Jellium Model(Phenomenological) 531

16.2.2 Self-Consistent Spherical Jellium Model 532

16.2.3 Ellipsoidal Shell Model 535

16.2.4 Nonalkali Clusters 535

16.2.5 Large Clusters 535

16.3 Geometric Shell Structure 537

16.3.1 Close-Packing 537

16.3.2 Wulff Construction 537

16.3 3 Polyhedra 538

16.3.4 Filling between Complete Shells 540

16.4 Cluster Growth on Surfaces 540

16.4.1 Monte Carlo Simulations 540

16.4.2 Mean-Field Rate Equations 541

16.5 Structure of Isolated Clusters 542

16.5.1 Theoretical Models 542

16 5.2 Structure of Some Isolated Clusters 546

16.6 Magnetism in Clusters 547

16.6.1 Magnetism in Isolated Clusters 547

16.6.2 Experimental Techniques for Studying Cluster Magnetism 549

16.6.3 Magnetism in Embedded Clusters 553

16.6.4 Graphite Surfaces 555

16.6.5 Study of Clusters by Scanning Tunneling Microscope 555

16.6.6 Clusters Embedded in a Matrix 557

16.7 Superconducting State of Nanoclusters 558

16.7.1 Qualitative Analysis 558

16 7.2 Thermodynamic Green's Function Formalism for Nanoclusters 559

Problems 562

References 565

CHAPTER 17 Complex Structures 567

17.1 Liquids 568

17.1.1 Introduction 568

17.1.2 Phase Diagram 568

17.1.3 Van Hove Pair Correlation Function 569

17.1.4 Correlation Function for Liquids 570

17.2 Superfluid 4He 570

17.2.1 Introduction 570

17.2.2 Phase Transition in 4He 570

17.2.3 Two-Fluid Model for Liquid 4He 571

17.2.4 Theory of Superfluidity in Liquid 4He 571

17.3 Liquid 3He 573

17.3.1 Introduction 573

17.3.2 Possibility of Superfluidity in Liquid 3He 574

17.3.3 Fermi Liquid Theory 574

17.3.4 Experimental Results of Superfluidity in Liquid 3He 575

17.3.5 Theoretical Model for the A and A1 Phases 575

17.3.6 Theoretical Model for the B Phase 577

17.4 Liquid Crystals 578

17.4.1 Introduction 578

17.4.2 Three Classes of Liquid Crystals 578

17.4.3 The Order Parameter 580

17.4.4 Curvature Strains 581

17.4.5 Optical Properties of Cholesteric Liquid Crystals 581

17.5 Quasicrystals 583

17.5.1 Introduction 583

17.5.2 Penrose Tiles 583

17.5.3 Discovery of Quasicrystals 584

17.5.4 Quasiperiodic Lattice 584

17.5 5 Phonon and Phason Degrees of Freedom 586

17.5.6 Dislocation in the Penrose Lattice 589

17.5.7 Icosahedral Quasicrystals 589

17.6 Amorphous Solids 590

17.6.1 Introduction 590

17.6.2 Energy Bands in One-Dimensional Aperiodic Potentials 591

17.6.3 Density of States 593

17.6.4 Amorphous Semiconductors 593

Problems 594

References 597

CHAPTER 18 Novel Materials 599

18.1 Graphene 600

18.1.1 Introduction 600

18.1.2 Graphene Lattice 601

18.1.3 Tight-Binding Approximation 602

18.1.4 Dirac Fermions 606

18.1.5 Comprehensive View of Graphene 608

18.2 Fullerenes 608

18.2.1 Introduction 608

18.2.2 Discovery of C60 609

18.3 Fullerenes and Tubules 613

18.3.1 Introduction 613

18.3.2 Carbon Nauotubeles 614

18.3.3 Three Types of Carbon Nanotubes 614

18.3.4 Symmetry Properties of Carbon Nanotubes 616

18.3.5 Band Structure of a Fullercne Nanotube 617

18.4 Polymers 617

18.4.1 Introduction 617

18.4.2 Saturated and Conjugated Polymers 618

18.4.3 Transparent Metallic Polymers 621

18.4.4 Electronic Polymers 621

18.5 Solitons in Conducting Polymers 622

18 5.1 Introduction 622

18.5 2 Electronic Structure 623

18.5.3 Tight-Binding Model 623

18.5.4 Soliton Excitations 624

18.5.5 Solitons,Polarons,and Polaron Excitations 626

18.6.6 Polarons and Bipolarons 626

18.6 Photoinduced Electron Transfer 627

Problems 627

References 630

APPENDIX A Elements of Group Theory 633

A.1 Symmetry and Its Consequences 633

A.1.1 Symmetry of Crystals 633

A.1.2 Definition of a Group 633

A.1.3 Symmetry Operations in Crystal Lattices 634

A.2 Space Groups 634

A.2.1 Introduction 634

A.2.2 Space Group Operations 634

A.3 Point Group Operations 636

A.3.1 Introduction 636

A.3.2 Description of Point Groups 636

A.3.3 The Cubic Group Oh 638

APPENDIX B Mossbauer Effect 641

B.1 Introduction 641

B.2 Recoilless Fraction 642

B.3 Average Transferred Energy 643

Reference 644

APPENDIX C Introduction to Renormalization Group Approach 645

C.1 Critical Behavior 645

C.2 Theory for Scaling 646

C.3 Renormalization Group Approach 648

References 649

lndex 651