第一章 随机事件与概率 1
第一讲 有趣的偶然世界(概率论序言) 2
第二讲 随机事件及其概率 7
第三讲 古典概型 13
第四讲 频率与概率 20
第五讲 概率的公理化定义及性质 27
第六讲 加法公式及其应用 31
第七讲 乘法公式及其应用 34
第八讲 事件的独立性 41
第九讲 全概率公式和贝叶斯公式 45
第二章 随机变量及其分布 52
第十讲 随机变量的概念 53
第十一讲 离散型随机变量及其概率函数 56
第十二讲 连续型随机变量及其概率密度 59
第十三讲 分布函数 66
第十四讲 随机变量函数的分布 71
第十五讲 二项分布 75
第十六讲 泊松分布 82
第十七讲 正态分布 88
第三章 多维随机变量及其分布 97
第十八讲 随机向量、联合分布和边缘分布 98
第十九讲 随机变量的独立性 106
第二十讲 条件分布 110
第二十一讲 随机向量函数的分布 117
第四章 随机变量的数字特征 128
第二十二讲 随机变量的数学期望 129
第二十三讲 随机变量的方差 141
第二十四讲 协方差与相关系数 147
第五章 大数定律与中心极限定理 155
第二十五讲 大数定律 155
第二十六讲 中心极限定理 159
第六章 数理统计 168
第二十七讲 引言 170
第二十八讲 数理统计的基本概念 174
第二十九讲 参数点估计 185
第三十讲 区间估计 196
第三十一讲 假设检验 208
第三十二讲 拟合优度的x2检验 228
第三十三讲 一元线性回归 235
附录 247
Ⅰ.排列与组合 247
Ⅱ.事件的关系和运算 249
Ⅲ.概率论与数理统计多媒体教学系统 252
附表 253
表1 泊松分布表 253
表2 标准正态分布函数值表 255
表3 t分布分位数表 256
表4 x2分布分位数表 257
表5 F分布分位数表 259
综合练习题 271
各章思考与练习及综合练习答解 276
参考书目 290