第一章 概述 1
第一节 控制理论的发展 1
第二节 控制系统的组成 2
第三节 控制系统的主要类型 4
第四节 本书的主要内容 6
第二章 对象及其他环节的动态特性 7
第一节 一阶特性 8
一、对象或环节数学模型的建立 8
第三节 根轨迹作图法 13
二、一阶对象或环节的特性 14
三、数学模型的无因次化 17
第二节 二阶特性 18
一、二阶数学模型的建立 18
二、二阶对象的特性 21
第三节 纯滞后特性 24
第四节 其他特性 25
一、积分特性 26
二、高阶特性 26
第五节 传递函数与方块图 28
一、传递函数 28
二、方块图 29
三、利用方块图推演对象的动态特性举例 35
一、信号流图及有关术语 39
第六节 信号流图 39
二、信号流图的运算 40
三、信号流图与方块图 42
四、应用信号流图推演对象的数学模型举例 42
第七节 对象动态特性的测试 44
一、实验测试 46
二、数据处理 46
第三章 系统的时域分析方法 59
第一节 调节系统的数学模型 59
二、一阶系统的暂态响应 65
一、典型试验信号 65
第二节 调节系统的过渡过程 65
三、二阶系统的暂态响应 68
四、高阶系统的试差求解 77
第三节 劳斯稳定判据 80
第四节 过渡过程的质量指标 83
一、以过渡过程形式表示的质量指标 83
二、误差性能指标 87
第五节 常规调节规律及其对系统调节质量的影响 93
一、常规调节器的调节规律 93
二、调节器参数对调节过程的影响 98
第六节 测量滞后对调节质量的影响 98
一、电子模拟计算机的运算器 101
第七节 电子模拟计算机及其在系统分析中的应用 101
二、应用电子模拟计算机求解微分方程式 104
三、线性自动调节系统的模拟 110
第四章 根轨迹分析方法 123
第一节 概述 123
第二节 特征根与过渡过程的关系 123
一、系统的稳定条件 124
二、特征根与过渡过程的关系 124
三、调节系统质量指标在根平面上的表示 128
一、开环与闭环极点 131
二、解析法求取根轨迹 132
三、图解法绘制根轨迹 134
第四节 调节系统的分析与设计 147
一、开环极点对系统质量的影响 148
二、开环零点对系统质量的影响 150
三、比例积分调节 153
四、从闭环零极点求取过度过程 156
第五节 闭环零点及环外极点对调节质量的影响 158
一、闭环零点及其影响 158
二、环外极点对质量的影响 162
第五章 频率特性分析法 165
第一节 频率特性及其图示法 165
一、频率特性传递函数的关系 166
二、频率特性的图示法 169
三、频率特性的实验测定法 186
第二节 奈魁斯特稳定判据 186
一、围线映射原理 186
二、奈魁斯特稳定判据 189
三、奈魁斯特稳定判据的物理意义 195
第三节 稳定裕度及其在系统分析与设计中的应用 196
一、稳定裕度及其与过渡过程之间的关系 197
二、控制系统分析与设计的稳定裕度法 203
第四节 衰减频率特性及其在系统分析与设计中的应用 211
二、衰减频率特性曲线的绘制 212
一、衰减频率特性 212
三、衰减比判据--奈魁斯特准则的推广应用 215
四、衰减频率特性分析设计法 216
第五节 闭环频率特性及按M最大值的系统分析设计法 218
一、闭环频率特性及特性曲线的绘制 218
二、闭环幅频特性与调节系统品质之间的关系 224
三、最大M值分析设计法 227
第六章 非线性系统 233
第一节 概述 233
第二节 描述函数及其分析法 235
一、描述函数 235
二、描述函数分析法 247
第三节 相平面及其分析法 254
一、概述 254
二、相轨迹作图法 256
三、相轨迹图的特征 260
四、由相平面轨迹图求取时间特性的方法 262
五、非线性系统的相平面分析法 263
第四节 非线性系统的李雅普诺夫稳定性分析法 270
一、非线性系统稳定性的一般定义 271
二、李雅普诺夫稳定性分析法 272
一、平稳随机过程的概述 277
第一节 平稳随机过程和各态历经性简介 277
第七章 控制系统的统计分析方法 277
二、各态历经性 279
第二节 相关函数 280
一、相关函数的概念 280
二、相关函数的性质及其物理意义 283
三、自相关函数和互相关函数的关系 285
第三节 谱密度 288
一、谱密度的概念 288
二、谱密度和相关函数的关系 292
三、双边拉氏变换及其在谱论上的应用 293
四、谱密度的传递 301
五、谱密度的关系 304
六、用相关分析方法来估计传递函数的例子 307
第四节 有关随机信号的控制系统的设计 314
一、反馈控制系统的误差 314
二、最优线性滤波器 317
三、反馈控制系统的最优参数整定 322
第八章 离散系统与Z变换 324
第一节 离散系统及连续系统的离散化 324
一、采样器 324
二、保持器 326
三、采样定律 327
四、微分方程的差分化 328
第二节 Z变换及改进Z变换 331
一、Z变换 331
二、Z变换的几个性质 333
三、改进Z变换 334
四、Z反变换 337
五、应用Z变换求解差分方程式 340
六、脉冲传递函数 340
第三节 离散系统的分析与设计 346
一、Z变换分析法 346
二、离散系统的稳定性 349
三、Z平面中的分析与设计 353
四、频率特性平面中的分析与设计 357
五、采样调节器的设计 359
第九章 状态空间分析方法 366
第一节 状态空间概述 366
一、引言 366
二、状态变量和状态空间 366
三、矩阵状态方程 369
第二节 状态空间分析方法 370
一、控制系统的状态空间表达式 370
二、特征方程与特征根 382
三、线性定常系统状态方程求解及状态转移矩阵 385
四、二阶线性系统的状态空间表达式及求解 388
五、状态方程与传递矩阵的关系 390
六、离散系统的状态空间表达式 395
七、离散系统状态方程的求解 397
八、连续系统状态方程的离散化 399
第三节 数字计算机模拟 401
一、概述 401
二、动态系统数字模拟的计算方法 402
三、控制系统的数字模拟 407
第十章 最优控制 412
第一节 概述 412
一、最优控制问题的特征 412
二、可控性 415
三、可观测性 418
第二节 最优控制中的变分法 421
一、变分法的基本命题与最优控制的基本类型 421
二、欧拉-拉格朗奇方程 422
三、拉格朗奇乘子法 427
第三节 极小值原理 430
一、汉密尔顿函数 431
二、极小值原理 433
三、用极小值原理求解最优控制问题的一般步骤 436
第四节 动态规划法 437
一、最优化原则 437
二、汉密尔顿-雅可比方程 440
第五节 最优控制系统举例-最小时间控制 443
附录 447
附录一、拉氏变换的基本定理 447
附录二、拉氏变换对照表 447
附录三、Z变换表 449
附录四、矩阵 452
一、矩阵定义 452
二、矩阵的代数运算 454
三、矩阵的逆变换 455
四、矩阵的导数和积分 455
五、凯利-汉密尔顿定理 456