《金融市场数学 第2版 英文》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:(加)Robert J. Elliott,(加)Ekkehard kopp著
  • 出 版 社:北京:世界图书出版公司北京公司
  • 出版年份:2010
  • ISBN:9787510005671
  • 页数:352 页
图书介绍:本书旨在讲述研究现代金融市场衍生证券,如期权、期货和交换业务等所需的数学知识。建立在著名的Black-Scholes理论基础上的理想化连续时间模型需要对现代微积分有较深的了解。

1 Pricing by Arbitrage 1

1.1 Introduction:Pricing and Hedging 1

1.2 Single-Period Option Pricing Models 10

1.3 A General Single-Period Model 12

1.4 A Single-Period Binomial Model 14

1.5 Multi-period Binomial Models 20

1.6 Bounds on Option Prices 24

2 Martingale Measures 27

2.1 A General Discrete-Time Market Model 27

2.2 Trading Strategies 29

2.3 Martingales and Risk-Neutral Pricing 35

2.4 Arbitrage Pricing:Martingale Measures 38

2.5 Strategies Using Contingent Claims 43

2.6 Example:The Binomial Model 48

2.7 From CRR to Black-Scholes 50

3 The First Fundamental Theorem 57

3.1 The Separating Hyperplane Theorem in Rn 57

3.2 Construction of Martingale Measures 59

3.3 Pathwise Description 61

3.4 Examples 69

3.5 General Discrete Models 71

4 Complete Markets  87

4.1 Completeness and Martingale Representation 88

4.2 Completeness for Finite Market Models 89

4.3 The CRR Model 91

4.4 The Splitting Index and Completeness 94

4.5 Incomplete Models:The Arbitrage Interval 97

4.6 Characterisation of Complete Models 101

5 Discrete-time American Options 105

5.1 Hedging American Claims 105

5.2 Stopping Times and Stopped Processes 107

5.3 Uniformly Integrable Martingales 110

5.4 Optimal Stopping:The Snell Envelope 116

5.5 Pricing and Hedging American Options 124

5.6 Consumption-Investment Strategies 126

6 Continuous-Time Stochastic Calculus 131

6.1 Continuous-Time Processes 131

6.2 Martingales 135

6.3 Stochastic Integrals 141

6.4 The It? Calculus 149

6.5 Stochastic Differential Equations 158

6.6 Markov Property of Solutions of SDEs 162

7 Continuous-Time European Options 167

7.1 Dynamics 167

7.2 Girsanov's Theorem 168

7.3 Martingale Representation 174

7.4 Self-Financing Strategies 183

7.5 An Equivalent Martingale Measure 185

7.6 Black-Scholes Prices 193

7.7 Pricing in a Multifactor Model 198

7.8 Barrier Options 204

7.9 The Black-Scholes Equation 214

7.10 The Greeks 217

8 The American Put Option 223

8.1 Extended Trading Strategies 223

8.2 Analysis of American Put Options 226

8.3 The Perpetual Put Option 231

8.4 Early Exercise Premium 234

8.5 Relation to Free Boundary Problems 238

8.6 An Approximate Solution 243

9 Bonds and Term Structure 247

9.1 Market Dynamics 247

9.2 Future Price and Futures Contracts 252

9.3 Changing Numéraire 255

9.4 A General Option Pricing Formula 258

9.5 Term Structure Models 262

9.6 Short-rate Diffusion Models 264

9.7 The Heath-Jarrow-Morton Model 277

9.8 A Markov Chain Model 282

10 Consumption-Investment Strategies 285

10.1 Utility Functions 285

10.2 Admissible Strategies 287

10.3 Maximising Utility of Consumption 291

10.4 Maximisation of Terminal Utility 296

10.5 Consumption and Terminal Wealth 299

11 Measures of Risk 303

11.1 Value at Risk 304

11.2 Coherent Risk Measures 308

11.3 Deviation Measures 316

11.4 Hedging Strategies with Shortfall Risk 320

Bibliography 329

Index 349