Ⅰ.PRELIMINARIES 1
1.Schwarz's Lemma 1
2.Pick's Theorem 5
3.Poisson Integrals 10
4.Hardy-Littlewood Maximal Function 19
5.Nontangential Maximal Function and Fatou's Theorem 27
6.Subharmonic Functions 32
Notes 38
Exercises and Further Results 39
Ⅱ.HP SPACES 48
1.Definitions 48
2.Blaschke Products 51
3.Maximal Functions and Boundary Values 55
4.(1/π)∫(log|f(t)|/(1+t2))dt>-∞ 61
5.The Nevanlinna Class 66
6.Inner Functions 71
7.Beurling's Theorem 78
Notes 83
Exercises and Further Results 84
Ⅲ.CONJUGATE FUNCTIONS 98
1.Preliminaries 98
2.The LP Theorems 106
3.Conjugate Functions and Maximal Functions 111
Notes 118
Exercises and Further Results 120
Ⅳ.SOME EXTREMAL PROBLEMS 128
1.Dual Extremal Problems 128
2.The Carleson-Jacobs Theorem 134
3.The Helson-Szeg? Theorem 139
4.Interpolating Functions of Constant Modulus 145
5.Parametrization of K 151
6.Nevanlinna's Proof 159
Notes 168
Exercises and Further Results 168
Ⅴ.SOME UNIFORM ALGEBRA 176
1.Maximal Ideal Spaces 176
2.Inner Functions 186
3.Analytic Discs in Fibers 191
4.Representing Measures and Orthogonal Measures 193
5.The Space L1/H 1 0 198
Notes 205
Exercises and Further Results 206
Ⅵ.BOUNDED MEAN OSCILLATION 215
1.Preliminaries 215
2.The John-Nirenberg Theorem 223
3.Littlewood-Paley Integrals and Carleson Measures 228
4.Fefferman's Duality Theorem 234
5.Vanishing Mean Oscillation 242
6.Weighted Norm Inequalities 245
Notes 259
Exercises and Further Results 261
Ⅶ.INTERPOLATING SEQUENCES 275
1.Carleson's Interpolation Theorem 275
2.The Linear Operator of Interpolation 285
3.Generations 289
4.Harmonic Interpolation 292
5.Earl's Elementary Proof 299
Notes 304
Exercises and Further Results 305
Ⅷ.THE CORONA CONSTRUCTION 309
1.Inhomogeneous Cauchy-Riemann Equations 309
2.The Corona Theorem 314
3.Two Theorems on Minimum Modulus 323
4.Interpolating Blaschke Products 327
5.Carleson's Construction 333
6.Gradients of Bounded Harmonic Functions 338
7.AConstructive Solution of ?b/?=μ 349
Notes 357
Exercises and Further Results 358
Ⅸ.DOUGLAS ALGEBRAS 364
1.The Douglas Problem 364
2.H∞+C 367
3.The Chang-Marshall Theorem 369
4.The Structure of Douglas Algebras 375
5.The Local Fatou Theorem and an Application 379
Notes 384
Exercises and Further Results 385
Ⅹ.INTERPOLATING SEQUENCES AND MAXIMAL IDEALS 391
1.Analytic Discs in ? 391
2.Hoffman's Theorem 401
3.Approximate Dependence between Kernels 406
4.Interpolating Sequences and Harmonic Separation 412
5.A Constructive Douglas-Rudin Theorem 418
Notes 428
Exercises and Further Results 428
BIBLIOGRAPHY 434
INDEX 453