《KdV方程和KAM理论 英文》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:(瑞士)Thomas Kappeler,(德)Jurgen Poschel编著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2010
  • ISBN:9787040286984
  • 页数:282 页
图书介绍:本书是天元基金影印数学丛书之一,介绍了可积偏微分方程理论的两个方面(KdV&KAM)。第一个方面是可积偏微分方程的正规形式理论,以很重要的非线性可积偏微分方程——周期的Korteweg de Vries方程为例来阐述这个正规形式理论,这构成了书的“KdV”部分。第二个方面是可积偏微分方程的哈密尔顿摄动理论,它的原始模型是由Kolmogorov,Arnold和Moser发展起来的针对有限维系统的理论,这构成了书的“KAM”部分。本书内容包括:Classical Background,Birkhoff Coordinates,Perturbed KdV Equations,The KAM Proof,Kuksin’s Lemma,Background Material,Psi-Functions and Frequencies,Birkhoff Normal Forms,Some Technicalities。本书不仅是为可积偏微分方程理论和哈密尔顿摄动理论的专家所写,也是为整体分析和KAM理论领域的研究工作者和研究生所写。为了使读者更容易读懂本书,作者增加了描述有限维哈密尔顿系统的一章,

Chapter Ⅰ The Beginning 1

1 Overview 1

Chapter Ⅱ Classical Background 19

2 Hamiltonian Formalism 19

3 Liouville Integrable Systems 27

4 Birkhoff Integrable Systems 34

5 KAM Theory 39

Chapter Ⅲ Birkhoff Coordinates 51

6 Background and Results 51

7 Actions 63

8 Angles 69

9 Cartesian Coordinates 74

10 Orthogonality Relations 85

11 The Diffeomorphism Property 91

12 The Symplectomorphism Property 102

Chapter Ⅳ Perturbed KdV Equations13 The Main Theorems 111

14 Birkhoff Normal Form 118

15 Global Coordinates and Frequencies 127

16 The KAM Theorem 133

17 Proof of the Main Theorems 139

Chapter Ⅴ The KAM Proof 145

18 Set Up and Summary of Main Results 145

19 The Linearized Equation 152

20 The KAM Step 160

21 Iteration and Convergence 165

22 The Excluded Set of Parameters 171

Chapter Ⅵ Kuksin's Lemma 177

23 Kuksin's Lemma 177

Chapter Ⅶ Background Material 187

A Analyticity 187

B Spectra 194

C KdV Hierarchy 207

Chapter Ⅷ Psi-Functions and FrequenciesD Construction of the Psi-Functions 211

E A Trace Formula 223

F Frequencies 227

Chapter Ⅸ Birkhoff Normal FormsG Two Results on Birkhoff Normal Forms 233

H Birkhoff Normal Form of Order 6 240

I Kramer's Lemma 248

J Nondegeneracy of the Second KdV Hamiltonian 252

Chapter Ⅹ Some Technicalities 257

K Symplectic Formalism 257

L Infinite Products 260

M Auxiliary Results 262

References 267

Index 275

Notations 57

1 a-cycles 57

2 Signs of ? 62

3 Signs of ? for real q 62

4 Labeling of periodic eigenvalues as q varies 64

5 Isolating neighbourhoods 65

6 A generic △-function 198

7 The set ?a,b? 202

8 a-and b-cycles for N=2 224

9 a′-and b-cycles with basepoint λ0 for N=2 224

10 Signs of ? for real q 282