第一章 原史时期的数论 1
1.1 引子 1
1.2 素数和因数分解 4
1.3 完全数 5
1.4 一次问题 5
1.5 毕达哥拉斯三角形 6
1.6 两个平方数的和 7
1.7 斐波那契和《平方数》 10
1.8 关于佩尔(Pell)方程的早期工作 11
1.9 佩尔方程:阿基米德和印度人 14
1.10 丢番图与丢番图方程 19
1.11 丢番图及平方和 23
1.12 丢番图的复苏:韦达与巴歇 24
第二章 费马和他的信件 28
2.1 生平 28
2.2 二项式系数 34
2.3 证明与“归纳”的相较 37
2.4 完全数与费马定理 39
2.5 最初的探索 44
2.6 对二次剩余的初次尝试 46
2.7 两个平方数和的素因子 47
2.8 两个平方数之和 49
2.9 由两个平方数和表示的数 51
2.10 无限下降法以及方程x4-y4=z2 55
2.11 费马成熟时期的问题 57
2.12 “初等”二次型 61
2.13 佩尔方程 67
2.14 二次不定方程 73
2.15 对亏格1的方程的追本溯源 75
2.16 再论下降法 81
2.17 结论 85
附录Ⅰ 欧几里得二次域 89
附录Ⅱ 射影空间中的亏格1曲线 92
附录Ⅲ 作为空间四次曲线的费马的“二重方程” 95
附录Ⅳ 下降法与莫德尔定理 98
附录Ⅴ 方程y2=x3-2x 104
第三章 欧拉 112
3.1 十六世纪、十七世纪和十八世纪的科学活动 112
3.2 欧拉的生平 114
3.3 欧拉与哥德巴赫 119
3.4 欧拉关于数论的发现 121
3.5 角色一览表(Dramatis personae) 124
3.6 模N的乘法群 132
3.7 “实”对“虚” 140
3.8 错失二次互反律 142
3.9 二元二次型 146
3.10 搜寻大素数 152
3.11 四平方数之和 157
3.12 平方根与连分式 159
3.13 二次丢番图方程 162
3.14 再论丢番图方程 166
3.15 椭圆积分和加法定理 169
3.16 作为丢番图方程的椭圆曲线 175
3.17 求和公式以及∑n-v 178
3.18 欧拉和ζ函数 182
3.19 三角函数 186
3.20 ζ函数的函数方程 190
3.21 数的分拆(Partitio numerorum)与模函数 193
3.22 结论 198
附录Ⅰ 二次互反律 199
附录Ⅱ 对平方和问题的一个初等证明 202
附录Ⅲ 椭圆曲线的加法定理 205
第四章 过渡时期:拉格朗日与勒让德 215
4.1 拉格朗日的生平 215
4.2 拉格朗日与数论 219
4.3 不定方程 220
4.4 拉格朗日的二元二次型理论 221
4.5 勒让德的生平 224
4.6 勒让德的算术工作 227
附录Ⅰ 三元二次型的哈塞(Hasse)原理 235
附录Ⅱ 关于正二元二次型的勒让德的证明 240
附录Ⅲ 拉格朗日关于不定二元二次型的一个证明 242
补充参考文献 250
译后记 254
王元先生给译者的信 255
人名索引 256
内容索引 262
3.PLIMOTON(泥板)322,毕达哥拉斯三角形列表.古巴比伦书写板,大约公元前1800年,取自O.诺伊格鲍尔与A.萨赫斯的《数学的楔形文文本》,New Haven,Conn.,1945,承蒙O.诺伊格鲍尔允许使用. 8
4.科尔布鲁克(H.T.Colebrooke)的《算术的代数及求积法——取自婆罗摩笈多和罢思古罗的梵文文献》的扉页.伦敦,1817. 17
5.韦达像(雕版画).J.Rabel作,取自《L'Algèbre nouvelle de M.Viète》,traduicte en fran?ois par A.Vasset ,àParis,chez Pierre Racolet,1630. 20
6.费马像(雕版画).F.Poilly作,取自《Varia Opera Mathematica》,D.Petri de Fermat,Tolosae,1679. 26
7.《韦达数学文集》的扉页.Lugduni Batavorum,1646,取自从前属于剑桥大学三一学院的复印件,它是1669年的一个赠送本,可能是经牛顿处理的. 31
8.《丢番图》的扉页.Diophanti Alexandrini Arithmeticorum libri sex...cum commentariis C.G.Bacheti V.C.et observationibus D.P.de Fermat...Accessit Doctrinae Analyticae inventum novum,collectum ex varijs eiusgem D.de Fermat epistolis,Tolosae,1670. 33
9.《Varia Opera Mathematica》的扉页.D.Petri de Fermat,Tolosae,1679. 35
10.费马的下降法(第二章§X).取自1670年的《丢番图》338-339页. 58
11.费马的“大定理”.1670年《丢番图》的第61页. 65
12.老年的欧拉.Küttner根据 J.Darbes的画像蚀刻:取自P.-H.Fuss,Correspondance Mathèmatique et Physique de quelques cèlèbres gèomètres du ⅩⅧ-ème siècle,tome I,圣彼得堡,1843. 111
13.中年的欧拉.F.Weber根据E.Handmann的画像蚀刻,1753. 118
14.欧拉的《无穷分析导论(Introductio in Analysin Infinitorum)》的卷首插图页. 187
15.欧拉的《无穷分析导论(Introductio in Analysin Infinitorum)》的扉页. 188
16.拉格朗日像(雕版画).Delpech作,承蒙巴黎的科学院档案馆提供. 214
17.勒让德的《论数论(Essai sur la Thèorie des Nombres)》的扉页.巴黎,An Ⅵ(=1798). 226