一 有关速算方法与运算技巧 1
练习一 6
二 拆项法 8
1.用拆项法来计算、化简 10
2.用拆项法来分解因式 15
3.用拆项法来解方程 18
4.用拆项法来求数列的通项公式和前n项和 21
5.用拆项法求证不等式 24
练习二 25
三 尝试探索法 28
练习三 39
四 换元法 40
1.用换元法来计算、化简、求证 40
2.用换元法求数列的通项公式 51
3.用换元法来解方程(组) 52
4.用换元法来求无理函数的最值问题 68
5.用换元法来解平面几何问题 73
练习四 75
五 平方差公式法 80
1.运用(a+b)(a+c)=(a+?)2- 80
(?)2来解题 80
2.用平方差公式来解无理方程 83
练习五 85
六 韦达定理法 87
1.用韦达定理法来解无理方程 87
2.用韦达定理法来解齐次方程 91
3.用韦达定理法来解二元一次方程组 93
4.用韦达定理法来解对称方程组 94
5.用韦达定理法来求二次函数的图象与坐标轴的交点之间的距离 99
6.用韦达定理法来解有关圆锥曲线的问题 101
练习六 111
七 倒推法 114
练习七 120
1.直接应用 121
八 加项为零法 121
2.间接应用 123
练习八 129
九 多元方程组的几种类型的特殊解法 131
1.叠加法 131
2.分解降幂法 134
3.变形降幂法 136
4.相除降幂法 138
练习九 142
十 一类方程af(x)+?=ac+?的简捷解法及其应用 145
练习十 150
十一 附答案 152