《实用偏微分方程 第4版 英文版》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:(美)哈伯曼(Haberman,R.)著
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2005
  • ISBN:7111159101
  • 页数:769 页
图书介绍:本书讨论偏微分方程在工程技术科学与自然科学中的应用,讲授的内容是高级工程数学、自然科学范畴的数学方法中非常重要的部分。本书适合作为与傅里叶级数、正交函数和边值问题等相关的课程的教材,也可以作为学习格林函数、变换方法等的参考书,是一本非常好的应用数学入门书籍。   本书作者从事教学工作多年,积累了丰富的经验。本书注重应用、内容广泛、层次清晰,每章后均附有大量的习题,方便读者巩固所学到的知识。

1 Heat Equation 1

1.1 Introduction 1

1.2 Derivation of the Conduction of Heat in a One-Dimensional Rod 2

Contents 3

前言 3

1.3 Boundary Conditions 12

1.4 Equilibrium Temperature Distribution 14

1.4.1 Prescribed Temperature 14

1.4.2 Insulated Boundaries 16

1.5 Derivation of the Heat Equation in Two or Three Dimensions 21

2 Method of Separation of Variables 35

2.1 Introduction 35

2.2 Linearity 36

2.3 Heat Equation with Zero Temperatures at Finite Ends 38

2.3.1 Introduction 38

2.3.2 Separation of Variables 39

2.3.3 Time-Dependent Equation 41

2.3.4 Boundary Value Problem 42

2.3.5 Product Solutions and the Principle of Superposition 47

2.3.6 Orthogonality of Sines 50

2.3.7 Formulation,Solution,and Interpretation of an Example 51

2.3.8 Summary 54

2.4 Worked Examples with the Heat Equation:Other Boundary Value Problems 59

2.4.1 Heat Conduction in a Rod with Insulated Ends 59

2.4.2 Heat Conduction in a Thin Circular Ring 63

2.4.3 Summary of Boundary Value Problems 68

2.5.1 Laplace's Equation Inside a Rectangle 71

2.5 Laplace's Equation:Solutions and Qualitative Properties 71

2.5.2 Laplace's Equation for a Circular Disk 76

2.5.3 Fluid Flow Past a Circular Cylinder (Lift) 80

2.5.4 Qualitative Properties of Laplace's Equation 83

3 Fourier Series 89

3.1 Introduction 89

3.2 Statement of Convergence Theorem 91

3.3 Fourier Cosine and Sine Series 96

3.3.1 Fourier Sine Series 96

3.3.2 Fourier Cosine Series 106

3.3.3 Representing f(x)by Both a Sine and Cosine Series 108

3.3.4 Even and Odd Parts 109

3.3.5 Continuous Fourier Series 111

3.4 Term-by-Term Differentiation of Fourier Series 116

3.5 Term-By-Term Integration of Fourier Series 127

3.6 Complex Form of Fourier Series 131

4 Wave Equation:Vibrating Strings and Membranes 135

4.1 Introduction 135

4.2 Derivation of a Vertically Vibrating String 135

4.3 Boundary Conditions 139

4.4 Vibrating String with Fixed Ends 142

4.5 Vibrating Membrane 149

4.6 Reflection and Refraction of Electromagnetic(Light)and Acoustic(Sound)Waves 151

4.6.1 Snell's Law of Refraction 152

4.6.2 Intensity(Amplitude)of Reflected and Refracted Waves 154

4.6.3 Total Internal Refection 155

5.1 Introduction 157

5 Sturm-Liouville Eigenvalue Problems 157

5.2 Examples 158

5.2.1 Heat Flow in a Nonuniform Rod 158

5.2.2 Circularly Symmetric Heat Flow 159

5.3 Sturm-Liouville Eigenvalue Problems 161

5.3.1 General Classification 161

5.3.2 Regular Sturm-Liouville Eigenvalue Problem 162

5.3.3 Example and Illustration of Theorems 164

5.4 Worked Example:Heat Flow in a Nonuniform Rod without Sources 170

5.5 Self-Adjoint Operators and Sturm-Liouville Eigenvalue Problems 174

5.6 Rayleigh Quotient 189

5.7 Worked Example:Vibrations of a Nonuniform String 195

5.8 Boundary Conditions of the Third Kind 198

5.9 Large Eigenvalues(Asymptotic Behavior) 212

5.10 Approximation Properties 216

6 Finite Difference Numerical Methods for Partial Differential Equations 222

6.1 Introduction 222

6.2 Finite Differences and Truncated Taylor Series 223

6.3.2 A Partial Difference Equation 229

6.3.1 Introduction 229

6.3 Heat Equation 229

6.3.3 Computations 231

6.3.4 Fourier-von Neumann Stability Analysis 235

6.3.5 Separation of Variables for Partial Difference Equations and Analytic Solutions of Ordinary Difference Equations 241

6.3.6 Matrix Notation 243

6.3.7 Nonhomogeneous Problems 247

6.3.8 Other Numerical Schemesv 247

6.3.9 Other Types of Boundary Conditions 248

6.4 Two-Dimensional Heat Equation 253

6.5 Wave Equation 256

6.6 Laplace's Equation 260

6.7 Finite Element Method 267

6.7.1 Approximation with Nonorthogonal Functions(Weak Form of the Partial Differential Equation) 267

6.7.2 The Simplest Triangular Finite Elements 270

7 Higher Dimensional Partial Differential Equations 275

7.1 Introduction 275

7.2.1 Vibrating Membrane:Any Shape 276

7.2 Separation of the Time Variable 276

7.2.2 Heat Conduction:Any Region 278

7.2.3 Summary 279

7.3 Vibrating Rectangular Membrane 280

7.4 Statements and Illustrations of Theorems 289

for the Eigenvalue Problem ?2φ+?φ=0 289

7.5 Green's Formula,Self-Adjoint Operators and Multidimensional Eigenvalue Problems 295

7.6 Rayleigh Quotient and Laplace's Equation 300

7.6.1 Rayleigh Quotient 300

7.6.2 Time-Dependent Heat Equation and Laplace's Equation 301

7.7 Vibrating Circular Membrane and Bessel Functions 303

7.7.1 Introduction 303

7.7.2 Separation of Variables 303

7.7.3 Eigenvalue Problems(One Dimensional) 305

7.7.4 Bessel's Differential Equation 306

7.7.5 Singular Points and Bessel's Differential Equation 307

7.7.6 Bessel Functions and Their Asymptotic Properties(near z=0) 308

7.7.7 Eigenvalue Problem Involving Bessel Functions 309

7.7.8 Initial Value Problem for a Vibrating Circular Membrane 311

7.7.9 Circularly Symmetric Case 313

7.8 More on Bessel Functions 318

7.8.1 Qualitative Properties of Bessel Functions 318

7.8.2 Asymptotic Formulas for the Eigenvalues 319

7.8.3 Zeros of Bessel Functions and Nodal Curves 320

7.8.4 Series Representation of Bessel Functions 322

7.9 Laplace's Equation in a Circular Cylinder 326

7.9.1 Introduction 326

7.9.2 Separation of Variables 326

7.9.3 Zero Temperature on the Lateral Sides and on the Bottom or Top 328

7.9.4 Zero Temperature on the Top and Bottom 330

7.9.5 Modified Bessel Functions 332

7.10 Spherical Problems and Legendre Polynomials 336

7.10.1 Introduction 336

7.10.2 Separation of Variables and One-Dimensional Eigenvalue Problems 337

7.10.3 Associated Legendre Functions and Legendre Polynomials 338

7.10.4 Radial Eigenvalue Problems 341

7.10.5 Product Solutions,Modes of Vibration,and the Initial Value Problem 342

7.10.6 Laplace's Equation Inside a Spherical Cavity 343

8 Nonhomogeneous Problems 347

8.1 Introduction 347

8.2 Heat Flow with Sources and Nonhomogeneous Boundary Conditions 347

8.3 Method of Eigenfunction Expansion with Homogeneous Boundary Conditions(Differentiating Series of Eigenfunctions) 354

8.4 Method of Eigenfunction Expansion Using Green's Formula(With or Without Homogeneous Boundary Conditions) 359

8.5 Forced Vibrating Membranes and Resonance 364

8.6 Poisson's Equation 372

9.2 One-dimensional Heat Equation 380

9.1 Introduction 380

9 Green's Functions for Time-Independent Problems 380

9.3 Green's Functions for Boundary Value Problems for Ordinary Dif-ferential Equations 385

9.3.1 One-Dimensional Steady-State Heat Equation 385

9.3.2 The Method of Variation of Parameters 386

9.3.3 The Method of Eigenfunction Expansion for Green's Functions 389

9.3.4 The Dirac Delta Function and Its Relationship to Green's Functions 391

9.3.5 Nonhomogeneous Boundary Conditions 397

9.3.6 Summary 399

9.4.1 Introduction 405

9.4 Fredholm Alternative and Generalized Green's Functions 405

9.4.2 Fredholm Alternative 407

9.4.3 Generalized Green's Functions 409

9.5 Green's Functions for Poisson's Equation 416

9.5.1 Introduction 416

9.5.2 Multidimensional Dirac Delta Function and Green's Functions 417

9.5.3 Green's Functions by the Method of Eigenfunction Expansion and the Fredholm Alternative 418

9.5.4 Direct Solution of Green's Functions(One-Dimensional Eigenfunctions) 420

9.5.5 Using Green's Functions for Problems with Nonhomogeneous Boundary Conditions 422

9.5.6 Infinite Space Green's Functions 423

9.5.7 Green's Functions for Bounded Domains Using Infinite Space Green's Functions 426

9.5.8 Green's Functions for a Semi-Infinite Plane(y>0)Using Infinite Space Green's Functions:The Method of Images 427

9.5.9 Green's Functions for a Circle:The Method of Images 430

9.6 Perturbed Eigenvalue Problens 438

9.6.1 Introduction 438

9.6.2 Mathematical Example 438

9.6.3 Vibrating Nearly Circular Membrane 440

9.7 Summary 443

10.2 Heat Equation on an Infinite Domain 445

10 Infinite Domain Problems:Fourier Transform Solutions of Partial Differential Equations 445

10.1 Introduction 445

10.3 Fourier Transform Pair 449

10.3.1 Motivation from Fourier Series Identity 449

10.3.2 Fourier Transform 450

10.3.3 Inverse Fourier Transform of a Gaussian 451

10.4 Fourier Transform and the Heat Equation 459

10.4.1 Heat Equation 459

10.4.2 Fourier Transforming the Heat Equation:Transforms of Derivatives 464

10.4.3 Convolution Theorem 466

10.4.4 Summary of Properties ofthe Fourier Transform 469

10.5 Fourier Sine and Cosine Transforms:The Heat Equation on Semi-Infinite Intervals 471

10.5.1 Introduction 471

10.5.2 Heat Equation on a Semi-Infinite Interval Ⅰ 471

10.5.3 Fourier Sine and Cosine Transforms 473

10.5.4 Transforms of Derivatives 474

10.5.5 Heat Equation on a Semi-Infinite Interval Ⅱ 476

10.5.6 Tables of Fourier Sine and Cosine Transforms 479

10.6.1 One-Dimensional Wave Equation on an Infinite Interval 482

10.6 Worked Examples Using Transforms 482

10.6.2 Laplace's Equation in a Semi-Infinite Strip 484

10.6.3 Laplace's Equation in a Half-Plane 487

10.6.4 Laplace's Equation in a Quarter-Plane 491

10.6.5 Heat Equation in a Plane(Two-Dimensional Fourier Transforms) 494

10.6.6 Table of Double-Fourier Transforms 498

10.7 Scattering and Inverse Scattering 503

11.2 Green's Functions for the Wave Equation 508

11.2.1 Introduction 508

11 Green's Functions for Wave and Heat Equations 508

11.1 Introduction 508

11.2.2 Green's Formula 510

11.2.3 Reciprocity 511

11.2.4 Using the Green's Function 513

11.2.5 Green's Function for the Wave Equation 515

11.2.6 Alternate Differential Equation for the Green's Function 515

11.2.7 Infinite Space Green's Function for the One-Dimensional Wave Equation and d'Alembert's Solution 516

11.2.8 Infinite Space Green's Function for the Three-Dimensional Wave Equation(Huygens'Principle) 518

11.2.9 Two-Dimensional Infinite Space Green's Function 520

11.2.10 Summary 520

11.3 Green's Functions for the Heat Equation 523

11.3.1 Introduction 523

11.3.2 Non-Self-Adjoint Nature of the Heat Equation 524

11.3.3 Green's Formulav 525

11.3.5 Reciprocity 527

11.3.4 Adjoint Green's Function 527

11.3.6 Representation of the Solution Using Green's Functions 528

11.3.7 Alternate Differential Equation for the Green's Function 530

11.3.8 Infinite Space Green's Function for the Diffusion Equation 530

11.3.9 Green's Function for the Heat Equation(Semi-Infinite Domain) 532

11.3.10 Green's Function for the Heat Equation(on a Finite Region) 533

12 The Method of Characteristics for Linear and Quasilinear Wave Equations 536

12.1 Introduction 536

12.2 Characteristics for First-Order Wave Equations 537

12.2.1 Introduction 537

12.2.2 Method of Characteristics for First-Order Partial Differential Equations 538

12.3 Method of Characteristics for the One-Dimensional Wave Equation 543

12.3.1 General Solution 543

12.3.2 Initial Value Problem(Infinite Domain) 545

12.3.3 D'alembert's Solution 549

12.4 Semi-Infinite Strings and Reflections 552

12.5 Method of Characteristics for a Vibrating String of Fixed Length 557

12.6 The Method of Characteristics for Quasilinear Partial Differential Equations 561

12.6.1 Method of Characteristics 561

12.6.2 Traffic Flow 562

12.6.3 Method of Characteristics (Q=0) 564

12.6.4 Shock Waves 567

12.6.5 Quasilinear Example 579

12.7 First-Order Nonlinear Partial Differential Equations 585

12.7.1 Eikonal Equation Derived from the Wave Equation 585

12.7.2 Solving the Eikonal Equation in Uniform Media and Reflected Waves 586

12.7.3 First-Order Nonlinear Partial Differential Equations 589

13.1 Introduction 591

13 Laplace Transform Solution of Partial Differential Equations 591

13.2 Properties of the Laplace Transform 592

13.2.1 Introduction 592

13.2.2 Singularities of the Laplace Transform 592

13.2.3 Transforms of Derivatives 596

13.2.4 Convolution Theorem 597

13.3 Green's Functions for Initial Value Problems for Ordinary Differential Equations 601

13.4 A Signal Problem for the Wave Equation 603

13.5 A Signal Problem for a Vibrating String of Finite Length 606

13.6 The Wave Equation and its Green's Function 610

13.7 Inversion of Laplace Transforms Using Contour Integrals in the Complex Plane 613

13.8 Solving the Wave Equation Using Laplace Transforms (with Complex Variables) 618

14 Dispersive Waves:Slow Variations,Stability,Nonlinearity,and Perturbation Methods 621

14.1 Introduction 621

14.2 Dispersive Waves and Group Velocity 622

14.2.1 Traveling Waves and the Dispersion Relation 622

14.2.2 Group Velocity Ⅰ 625

14.3 Wave Guides 628

14.3.1 Response to Concentrated Periodic Sources with Frequency ωf 630

14.3.2 Green's Function If Mode Propagates 631

14.3.3 Green's Function If Mode Does Not Propagate 632

14.3.4 Design Considerations 632

14.4 Fiber Optics 634

14.5 Group Velocity Ⅱ and the Method of Stationary Phase 638

14.5.1 Method of Stationary Phase 639

14.5.2 Application to Linear Dispersive Waves 641

14.6 Slowly Varying Dispersive Waves(Group Velocity and Caustics) 645

14.6.1 Approximate Solutions of Dispersive Partial Differential Equations 645

14.6.2 Formation of a Caustic 648

14.7 Wave Envelope Equations(Concentrated Wave Number) 654

14.7.1 Schr?dinger Equation 655

14.7.2 Linearized Korteweg-de Vries Equation 657

14.7.3 Nonlinear Dispersive Waves:Korteweg-deVries Equation 659

14.7.4 Solitons and Inverse Scattering 662

14.7.5 Nonlinear Schr?dinger Equation 664

14.8 Stability and Instability 669

14.8.1 Brief Ordinary Differential Equations and Bifurcation Theory 669

14.8.2 Elementary Example of a Stable Equilibrium for a Partial Differential Equation 676

14.8.3 Typical Unstable Equilibrium for a Partial Differential Equation and Pattern Formation 677

14.8.4 Ill posed Problems 679

14.8.5 Slightly Unstable Dispersive Waves and the Linearized Complex Ginzburg-Landau Equation 680

14.8.6 Nonlinear Complex Ginzburg-Landau Equation 682

14.8.7 Long Wave Instabilities 688

14.8.8 Pattern Formation for Reaction-Diffusion Equations and the Turing Instability 689

14.9 Singular Perturbation Methods:Multiple Scales 696

14.9.1 Ordinary Differential Equation:Weakly Nonlinearly Damped Oscillator 696

14.9.2 Ordinary Differential Equation:Slowly Varying Oscillator 699

14.9.3 Slightly Unstable Partial Differential Equation on Fixed Spatial Domain 703

14.9.4 Slowly Varying Medium for the Wave Equation 705

14.9.5 Slowly Varying Linear Dispersive Waves(Including Weak Nonlinear Effects) 708

14.10 Singular Perturbation Methods:Boundary Layers Method of Matched Asymptotic Expansions 713

14.10.1 Boundary Layer in an Ordinary Differential Equation 713

14.10.2 Diffusion of a Pollutant Dominated by Convection 719

Bibliography 726

Answers to Starred Exercises 731

Index 751