《模拟CMOS集成电路设计 影印版》PDF下载

  • 购买积分:19 如何计算积分?
  • 作  者:罗扎(Rozavi,B.)著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2005
  • ISBN:7302108862
  • 页数:684 页
图书介绍:模拟集成电路的设计与其说是一门技术,还不如说是一门艺术。它比数字集成电路设计需要更严格的分析和更丰富的直觉。严谨坚实的理论无疑是严格分析能力的基石,而设计者的实践经验无疑是诞生丰富直觉的源泉。这也正是初学者模拟集成电路设计感到困惑并难以驾驭的根本原因。美国加州大学洛杉机分校(UCLA)教授B.Razavi凭借着他在美国多所著名大学执教多年的丰富教学经验和在世界知名顶级公司(AT&IT,Bell Lab HP)卓著的研究经历为我们提供了这本优秀教科书。本书自2000年出版以来得到了国内外读者的好评和青睐,被许多国际知名大学选为教科书。同时,由于原著者在世界知名顶级公怀的丰富研究经历,使本书也非常适合作为CMOS模拟集成电路设计或相关领域的研究中员和工程技术人员的参考书。

1 Introduction to Analog Design 1

1.1 Why Analog? 1

1.2 Why Integrated? 6

1.3 Why CMOS? 6

1.4 Why This Book? 7

1.5 General Concepts 7

1.5.1 Levels of Abstraction 7

1.5.2 Robust Analog Design 7

2 Basic MOS Device Physics 9

2.1 General Considerations 10

2.1.1 MOSFET as a Switch 10

2.1.2 MOSFET Structure 10

2.1.3 MOS Symbols 12

2.2 MOS I/V Characteristics 13

2.2.1 Threshold Voltage 13

2.2.2 Derivation of I/V Characteristics 15

2.3 Second-Order Effects 23

2.4 MOS Device Models 28

2.4.1 MOS Device Layout 28

2.4.2 MOS Device Capacitances 29

2.4.3 MOS Small-Signal Model 33

2.4.4 MOS SPICE models 36

2.4.5 NMOS versus PMOS Devices 37

2.4.6 Long-Channel versus Short-Channel Devices 38

3 Single-Stage Amplifiers 47

3.1 Basic Concepts 47

3.2 Common-Source Stage 48

3.2.1 Common-Source Stage with Resistive Load 48

3.2.2 CS Stage with Diode-Connected Load 53

3.2.3 CS Stage with Current-Source Load 58

3.2.4 CS Stage with Triode Load 59

3.2.5 CS Stage with Source Degeneration 60

3.3 Source Follower 67

3.4 Common-Gate Stage 76

3.5 Cascode Stage 83

3.5.1 Folded Cascode 90

3.6 Choice of Device Models 92

4 Differential Amplifiers 100

4.1 Single-Ended and Differential Operation 100

4.2 Basic Differential Pair 103

4.2.1 Qualitative Analysis 104

4.2.2 Quantitative Analysis 107

4.3 Common-Mode Response 118

4.4 Differential Pair with MOS Loads 124

4.5 Gilbert Cell 126

5 Passive and Active Current Mirrors 135

5.1 Basic Current Mirrors 135

5.2 Cascode Current Mirrors 139

5.3 Active Current Mirrors 145

5.3.1 Large-Signal Analysis 149

5.3.2 Small-Signal Analysis 151

5.3.3 Common-Mode Properties 154

6 Frequency Response of Amplifiers 166

6.1 General Considerations 166

6.1.1 Miller Effect 166

6.1.2 Association of Poles with Nodes 169

6.2 Common-Source Stage 172

6.3 Source Followers 178

6.4 Common-Gate Stage 183

6.5 Cascode Stage 185

6.6 Differential Pair 187

Appendix A:Dual of Miller’s Theorem 193

7 Noise 201

7.1 Statistical Characteristics of Noise 201

7.1.1 Noise Spectrum 203

7.1.2 Amplitude Distribution 206

7.1.3 Correlated and Uncorrelated Sources 207

7.2 Types of Noise 209

7.2.1 Thermal Noise 209

7.2.2 Flicker Noise 215

7.3 Representation of Noise in Circuits 218

7.4 Noise in Single-Stage Amplifiers 224

7.4.1 Common-Source Stage 225

7.4.2 Common-Gate Stage 228

7.4.3 Source Followers 231

7.4.4 Cascode Stage 232

7.5 Noise in Differential Pairs 233

7.6 Noise Bandwidth 239

8 Feedback 246

8.1 General Considerations 246

8.1.1 Properties of Feedback Circuits 247

8.1.2 Types of Amplifiers 254

8.2 Feedback Topologies 258

8.2.1 Voltage-Voltage Feedback 258

8.2.2 Current-Voltage Feedback 263

8.2.3 Voltage-Current Feedback 266

8.2.4 Current-Current Feedback 269

8.3 Effect of Loading 270

8.3.1 Two-Port Network Models 270

8.3.2 Loading in Voltage-Voltage Feedback 272

8.3.3 Loading in Current-Voltage Feedback 275

8.3.4 Loading in Voltage-Current Feedback 278

8.3.5 Loading in Current-Current Feedback 281

8.3.6 Summary of Loading Effects 283

8.4 Effect of Feedback on Noise 284

9 Operational Amplifiers 291

9.1 General Considerations 291

9.1.1 Performance Parameters 291

9.2 One-Stage Op Amps 296

9.3 Two-Stage Op Amps 307

9.4 Gain Boosting 309

9.5 Comparison 313

9.6 Common-Mode Feedback 314

9.7 Input Range Limitations 325

9.8 Slew Rate 326

9.9 Power Supply Rejection 334

9.10 Noise in Op Amps 336

10 Stability and Frequency Compensation 345

10.1 General Considerations 345

10.2 Multipole Systems 349

10.3 Phase Margin 351

10.4 Frequency Compensation 355

10.5 Compensation of Two-Stage Op Amps 361

10.5.1 Slewing in Two-Stage Op Amps 368

10.6 Other Compensation Techniques 369

11 Bandgap References 377

11.1 General Considerations 377

11.2 Supply-Independent Biasing 377

11.3 Temperature-Independent References 381

11.3.1 Negative-TC Voltage 381

11.3.2 Positive-TC Voltage 382

11.3.3 Bandgap Reference 384

11.4 PTAT Current Generation 390

11.5 Constant-Gm Biasing 392

11.6 Speed and Noise Issues 393

11.7 Case Study 397

12 Introduction to Switched-Capacitor Circuits 405

12.1 General Considerations 405

12.2 Sampling Switches 410

12.2.1 MOSFETS as Switches 410

12.2.2 Speed Considerations 414

12.2.3 Precision Considerations 417

12.2.4 Charge Injection Cancellation 421

12.3 Switched-Capacitor Amplifiers 423

12.3.1 Unity-Gain Sampler/Buffer 424

12.3.2 Noninverting Amplifier 432

12.3.3 Precision Multiply-by-Two Circuit 438

12.4 Switched-Capacitor Integrator 439

12.5 Switched-Capacitor Common-Mode Feedback 442

13 Nonlinearity and Mismatch 448

13.1 Nonlinearity 448

13.1.1 General Considerations 448

13.1.2 Nonlinearity of Differential Circuits 452

13.1.3 Effect of Negative Feedback on Nonlinearity 454

13.1.4 Capacitor Nonlinearity 457

13.1.5 Linearization Techniques 458

13.2 Mismatch 463

13.2.1 Offset Cancellation Techniques 471

13.2.2 Reduction of Noise by Offset Cancellation 476

13.2.3 Alternative Definition of CMRR 478

14 Oscillators 482

14.1 General Considerations 482

14.2 Ring Oscillators 484

14.3 LC Oscillators 495

14.3.1 Crossed-Coupled Oscillator 499

14.3.2 Colpitts Oscillator 502

14.3.3 One-Port Oscillators 505

14.4 Voltage-Controlled Oscillators 510

14.4.1 Tuning in Ring Oscillators 512

14.4.2 Tuning in LC Oscillators 521

14.5 Mathematical Model of VCOs 525

15 Phase-Locked Loops 532

15.1 Simple PLL 532

15.1.1 Phase Detector 532

15.1.2 Basic PLL Topology 533

15.1.3 Dynamics of Simple PLL 542

15.2 Charge-Pump PLLs 549

15.2.1 Problem of Lock Acquisition 549

15.2.2 Phase/Frequency Detector and Charge Pump 550

15.2.3 Basic Charge-Pump PLL 556

15.3 Nonideal Effects in PLLs 562

15.3.1 PFD/CP Nonidealities 562

15.3.2 Jitter in PLLs 567

15.4 Delay-Locked Loops 569

15.5 Applications 572

15.5.1 Frequency Multiplication and Synthesis 572

15.5.2 Skew Reduction 574

15.5.3 Jitter Reduction 576

Appendix A Short-Channel Effects and Device Models 579

A.1 Scaling Theory 579

A.2 Short-Channel Effects 583

A.2.1 Threshold Voltage Variation 583

A.2.2 Mobility Degradation with Vertical Field 585

A.2.3 Velocity Saturation 587

A.2.4 Hot Carrier Effects 589

A.2.5 Output Impedance Variation with Drain-Source Voltage 589

A.3 MOS Device Models 591

A.3.1 Level 1 Model 592

A.3.2 Level 2 Model 593

A.3.3 Level 3 Model 595

A.3.4 BSM Series 596

A.3.5 Other Models 597

A.3.6 Charge and Capacitance Modeling 598

A.3.7 Temperature Dependence 599

A.4 Process Corners 599

A.5 Analog Design in a Digital World 600

Appendix B CMOS Processing Technology 604

B.1 General Considerations 604

B.2 Wafer Processing 605

B.3 Photolithography 606

B.4 Oxidation 608

B.5 Ion Implantation 608

B.6 Deposition and Etching 611

B.7 Device Fabrication 611

B.7.1 Active Devices 611

B.7.2 Passive Devices 616

B.7.3 Interconnects 624

B.8 Latch-Up 627

Appendix C Layout and Packaging 631

C.1 General Layout Considerations 631

C.1.1 Design Rules 632

C.1.2 Antenna Effect 634

C.2 Analog Layout Techniques 635

C.2.1 Multifinger Transistors 635

C.2.2 Symmetry 637

C.2.3 Reference Distribution 642

C.2.4 Passive Devices 644

C.2.5 Interconnects 653

C.3 Substrate Coupling 660

Index 677