《数值分析》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:李红编著
  • 出 版 社:武汉:华中科技大学出版社
  • 出版年份:2003
  • ISBN:756093062X
  • 页数:274 页
图书介绍:本书的内容是现代科学计算中常用的数字计算方法及其原理,包括插值法、函数逼近与曲线拟合、数值积分、常微分方程数值方法、线性代数方程组的解法、非线性方程和方程组的解法及矩阵特征值与特征向量的计算。每章附有习题及数值试验题。

第1章 绪论 1

1.1 课程的意义、内容和特点 1

1.2 误差及有关概念 4

1.3 数值稳定性和病态问题 7

1.4 数值运算中的一些原则 9

1.5 几个算例 10

1.6 算法的实现 12

习题1 12

数值实验题1 14

第2章 插值法 17

2.1 问题的提法 17

2.2 拉格朗日(Lagrange)插值 18

2.3 差商与牛顿(Newton)插值 24

2.4 差分与等距节点的Newton插值 27

2.5 埃尔米特(Hermite)插值 32

2.6 分段插值法 36

2.7 三次样条(spline)插值 40

习题2 49

数值实验题2 51

第3章 函数逼近与曲线拟合 53

3.1 内积空间 53

3.2 函数的最佳平方逼近 56

3.3 正交多项式 59

3.4 用正交函数系作最佳平方逼近 61

3.5 曲线拟合的最小二乘法 63

3.6 最佳一致逼近多项式及其求法 72

习题3 81

数值实验题3 82

第4章 数值积分 83

4.1 数值求积公式的基本概念 83

4.2 牛顿-柯特斯(Newton-Cotes)公式 87

4.3 复化求积公式及其收敛性 92

4.4 龙贝格(Romberg)算法 96

4.5 高斯(Gauss)型求积公式 101

4.6 数值微分 111

习题4 115

数值实验题4 118

第5章 常微分方程的数值方法 120

5.1 建立常微分数值方法的基本思想与途径 120

5.2 欧拉(Euler)方法及其截断误差和阶 121

5.3 龙格-库塔(Runge-Kutta)方法 125

5.4 单步法收敛性与稳定性 131

5.5 线性多步法 137

5.6 预测-校正技术和外推技巧 141

习题5 147

数值实验题5 149

第6章 线性代数方程组的解法 151

6.1 引言及预备知识 151

6.2 Gauss消去法 156

6.3 Gauss主元素消去法 160

6.4 矩阵分解及其在解方程组中的应用 162

6.5 误差分析 178

6.6 线性代数方程组的迭代解法 181

习题6 194

数值实验题6 197

第7章 非线性方程和方程组的解法 200

7.1 二分法 200

7.2 简单迭代法 201

7.3 迭代过程的加速 209

7.4 Newton迭代法 211

7.5 弦截法与抛物线法 217

7.6 解非线性方程组的Newton迭代法 219

习题7 220

数值实验题7 221

第8章 矩阵特征值与特征向量的计算 223

8.1 幂法和反幂法 223

8.2 Jacobi方法 230

8.3 QR方法 233

习题8 239

数值实验题8 240

答案与提示 242

附录 数值实验程序 246

参考文献 274