第1章 绪论 1
1.1 反馈控制系统概述 1
1.2 反馈控制系统的特性 3
1.3 反馈控制原理 3
1.3.1 干扰的抑制 4
1.3.2 跟踪 5
1.3.3 对象不确定性的灵敏度 5
1.4 反馈控制系统的性能指标 6
1.4.1 暂态分析 6
1.4.2 稳态分析 10
1.5 Matlab在控制系统中的应用 11
1.5.1 Matlab简介 11
1.5.2 Matlab控制功能介绍 12
1.6 本书的内容和安排 15
习题 15
第2章 系统建模及其不确定性分析 20
2.1 系统建模 20
2.1.1 系统的数学模型 20
2.1.2 有限维LTI系统模型 21
2.1.3 无限维LTI系统的模型 22
2.2 非线性模型的线性化 26
2.2.1 在工作点附近的线性化 26
2.2.2 反馈线性化 27
2.3 建模不确定性 28
2.3.1 动态不确定性的表述 29
2.3.2 参数不确定性转换为动态不确定性 30
2.3.3 来自系统辨识的不确定性 33
习题 33
第3章 反馈控制系统稳定性分析 37
3.1 信号和系统的范数 37
3.2 BIBO稳定性分析 38
3.3 反馈控制系统的稳定性分析 40
3.4 劳斯-赫尔维兹稳定判据 43
3.5 稳定性分析的频域方法 44
3.5.1 Cauchy定理 45
3.5.2 奈奎斯特稳定判据 45
3.5.3 稳定裕度 49
3.5.4 利用伯德图分析临界稳定状态 51
习题 53
第4章 校正控制器设计与分析 56
4.1 校正控制器的设汁 56
4.1.1 超前控制器设计 58
4.1.2 滞后控制器设计 62
4.1.3 超前-滞后控制器设计 64
4.2 PID控制器设计 65
4.3 跟踪和噪声抑制问题 67
4.4 伯德图中增益-相位关系 70
4.5 设计实例 71
习题 75
第5章 鲁棒稳定性与鲁棒控制器 79
5.1 未建模动态与对象不确定性 79
5.1.1 未建模动态 79
5.1.2 对象不确定性 81
5.2 鲁棒稳定性 82
5.2.1 鲁棒稳定判据 82
5.2.2 稳定对象的鲁棒稳定性 85
5.3 鲁棒性能指标 86
5.4 参数不确定系统的鲁棒稳定性分析 89
5.4.1 对象中的不确定性参数 89
5.4.2 鲁棒稳定的Kharitanov判据 90
5.4.3 Kharitanov定理的推广 91
5.5 稳定对象的鲁棒控制器设计 93
5.5.1 所有稳定控制器的参数化 93
5.5.2 Q(s)的设计准则 93
5.6 H∞控制器的设计 99
5.6.1 问题的叙述 99
5.6.2 频谱因式分解 100
5.6.3 最优H∞控制器 100
5.6.4 次优H∞控制器 103
习题 105
第6章 时间滞后系统的分析与设计 108
6.1 时间滞后系统的分析 108
6.1.1 滞后系统的稳定性 109
6.1.2 滞后的帕德近似 110
6.1.3 滞后裕度 115
6.2 时滞补偿控制系统 119
6.2.1 Smith预估补偿控制 120
6.2.2 增益自适应补偿控制 121
6.2.3 观测器补偿控制 121
6.2.4 内模控制 122
6.3 大滞后系统的无模型智能控制 129
6.3.1 大滞后SISO非线性复杂系统问题 129
6.3.2 无模型智能控制问题 129
6.3.3 大滞后系统的无模型智能控制实现 131
习题 133
第7章 状态空间分析方法 135
7.1 状态空间描述法 135
7.2 状态反馈与极点配置 136
7.3 线性二次型调节器 138
7.4 状态观测器 140
7.5 反馈控制器 141
7.5.1 观测器与状态反馈 141
7.5.2 H2最佳控制器 142
7.5.3 所有稳定控制器的参数化 143
习题 144
第8章 定性控制系统 148
8.1 定性数学基础 148
8.1.1 定性量定义 148
8.1.2 定性量运算 148
8.2 定性控制系统的构成与设计 149
8.2.1 定性控制系统构成 149
8.2.2 定性控制系统分析 149
8.2.3 全状态反馈定性控制系统设计 152
8.3 定性-PID控制 153
8.3.1 并联型定性-PID控制 154
8.3.2 切换型定性-PID控制 155
8.4 含未知扰动情况的定性控制 156
8.5 MIMO非线性系统的定性控制 160
习题 163
第9章 模糊控制系统和非线性分析 164
9.1 引言 164
9.1.1 模糊控制器设计步骤 165
9.1.2 性能评价 166
9.1.3 应用领域 166
9.2 一个示范例子的介绍 167
9.2.1 选择模糊控制器的输入和输出 167
9.2.2 把控制知识融入规则中 168
9.2.3 知识的模糊量化 172
9.2.4 匹配:决定用哪一条规则 175
9.2.5 推理步骤:确定结论 178
9.2.6 把结论转换成控制作用 180
9.2.7 模糊决策的图形描述 183
9.3 语言变量、语言值和规则 184
9.3.1 论域 184
9.3.2 语言变量 184
9.3.3 语言值 184
9.3.4 语言规则 185
9.4 模糊集合、模糊规则和模糊推理 186
9.4.1 模糊集合 186
9.4.2 模糊if-then规则 191
9.4.3 模糊推理(近似推理) 192
9.4.4 解模糊 196
9.5 模糊建模(模糊推理系统) 199
9.5.1 Mamdani模糊模型 200
9.5.2 Takagi-Sugeno模糊系统 201
9.5.3 模糊系统是通用近似器 203
9.5.4 Tsukamoto模糊模型 204
9.5.5 模糊模型的分割形式 205
9.6 模糊系统的非线性分析 205
9.6.1 参数化模糊控制器 206
9.6.2 李雅普诺夫稳定性分析 209
9.6.3 绝对稳定性和圆判据 219
9.6.4 温度控制的例子 222
9.6.5 稳态跟踪误差的分析 224
第10章 模糊辨识和估计与模糊-神经建模 228
10.1 模糊辨识和估计的最小二乘算法 228
10.1.1 批量最小二乘算法 228
10.1.2 递推最小二乘算法 231
10.1.3 模糊系统的调整 233
10.1.4 模糊系统的批量最小二乘训练 235
10.1.5 模糊系统的递推最小二乘训练 237
10.2 模糊辨识和估计的梯度法 238
10.2.1 标准模糊系统的训练 238
10.2.2 T-S模糊系统的训练 241
10.2.3 动量项和步长大小 243
10.2.4 牛顿(Newton)和高斯-牛顿(Gauss-Newton)方法 244
10.3 自适应网络 247
10.3.1 自适应神经网络的结构 248
10.3.2 反向传播学习规则 251
10.3.3 复合学习规则 254
10.3.4 自适应网络的特例——神经网络 257
10.4 自适应神经-模糊推理系统 260
10.4.1 ANFIS结构 260
10.4.2 复合学习算法 262
10.4.3 ANFIS建模实例1:气动执行器建模及故障诊断 264
10.4.4 ANFIS建模实例2:混沌时间序列的预测 272
参考文献 275