目录 1
历史引言 1
第1章 电磁场的基本性质 1
1.1 电磁场 1
1.1.1 麦克斯韦方程 1
1.1.2 物质方程 2
1.1.3 突变面处的边界条件 3
1.1.4 电磁场的能量定律 6
1.2 波动方程和光速 9
1.3 标量波 12
1.3.1 平面波 12
1.3.2 球面波 13
1.3.3 谐波和相速 14
1.3.4 波包和群速 16
1.4 矢量波 20
1.4.1 一般的电磁平面波 20
1.4.2 谐电磁平面波 21
(a)椭圆偏振 21
(b)线偏振和圆偏振 25
(c)偏振态的表征——斯托克斯参量 26
1.4.3 任意形式的谐矢量波 28
1.5 平面波的反射和折射 32
1.5.1 反射定律和折射定律 32
1.5.2 菲涅耳公式 34
1.5.3 反射率和透射率;反射和折射产生的偏振 36
1.5.4 全反射 41
1.6 波在分层媒质中的传播和介质膜理论 45
1.6.1 基本微分方程 46
1.6.2 分层媒质的特性矩阵 49
(a)均匀介质膜 51
(b)分层媒质作为均匀薄膜的膜堆 52
1.6.3 反射系数和透射系数 53
1.6.4 均匀介质膜 54
1.6.5 周期性分层媒质 59
第2章 电磁势和电磁极化 64
2.1 真空中的电动势 65
2.1.1 矢势和标势 65
2.1.2 推迟势 66
2.2 极化和磁化 68
2.2.1 用极化强度和磁化强度表示矢势和标势 68
2.2.2 赫兹矢量 72
2.2.3 一个线性电偶极子的场 73
2.3 洛伦兹-洛伦茨公式和初等色散理论 76
2.3.1 介电极化率和磁极化率 76
2.3.2 有效场 77
2.3.3 平均极化率:洛伦兹-洛伦茨公式 78
2.3.4 初等色散理论 81
2.4 用积分方程处理电磁波的传播 88
2.4.1 基本积分方程 88
2.4.2 埃瓦尔德-欧西恩消光定理和洛伦兹-洛伦茨公式的严格推导 89
2.4.3 借助埃瓦尔德-欧西恩消光定理处理平面波的折射和反射 93
第3章 几何光学基础 98
3.1 对于极短波长的近似处理 98
3.1.1 程函方程的推导 99
3.1.2 光线和几何光学的强度定律 101
3.1.3 振幅矢量的传播 105
3.1.4 推广和几何光学的适用范围 107
3.2 光线的一般性质 109
3.2.1 光线的微分方程 109
3.2.2 折射定律和反射定律 111
3.2.3 光线汇及其焦点特性 113
3.3 几何光学的其他基本定理 114
3.3.1 拉格朗日积分不变式 114
3.3.2 费马原理 115
3.3.3 马吕斯和杜平定理及一些有关定理 117
第4章 光学成像的几何理论 120
4.1 哈密顿特征函数 120
4.1.1 点特征函数 120
4.1.2 混合特征函数 122
4.1.3 角特征函数 123
4.1.4 旋转折射面的角特征函数近似形式 124
4.1.5 旋转反射面的角特征函数近似形式 127
4.2 理想成像 129
4.2.1 一般定理 129
4.2.2 麦克斯韦“鱼眼” 133
4.2.3 面的无像散成像 135
4.3.1 一般公式 136
4.3 具有轴对称的射影变换(直射变换) 136
4.3.2 远焦情况 139
4.3.3 射影变换的分类 140
4.3.4 射影变换的组合 141
4.4 高斯光学 142
4.4.1 旋转折射面 142
4.4.2 旋转反射面 145
4.4.3 厚透镜 145
4.4.4 薄透镜 148
4.4.5 一般共轴系统 148
4.5 广角光锥的无像散成像 151
4.5.1 正弦条件 152
4.6 像散光锥 153
4.5.2 赫谢耳条件 153
4.6.1 细光锥的焦点特性 154
4.6.2 细光锥的折射 155
4.7 色差和棱镜的色散 158
4.7.1 色差 158
4.7.2 棱镜的色散 161
4.8 辐射度量学和孔径 164
4.8.1 辐射度量学的基本概念 164
4.8.2 光阑和光瞳 168
4.8.3 像的亮度和照度 170
4.9 光线追迹 172
4.9.1 斜子午光线 172
4.9.2 傍轴光线 174
4.9.3 不交轴光线 175
4.10 非球面的设计 178
4.10.1 轴上无像散的实现 178
4.10.2 不晕的实现 181
4.11 投影法图像重建(计算机层析术) 183
4.11.1 引言 183
4.11.2 吸收媒质中的光束传播 184
4.11.3 射线积分和投影 185
4.11.4 N维Radon变换 186
4.11.5 计算机层析术的截面重建和投影-层析定理(projection-slice theorem) 188
第5章 像差的几何理论 192
5.1 波像差和光线像差;像差函数 192
5.2 施瓦茨蔡耳德微扰程函 196
5.3 初级(赛德尔)像差 199
5.4 初级像差的相加定理 205
5.5 一般共轴透镜系统的初级像差系数 207
5.5.1 利用两条傍轴光线表示的赛德尔公式 207
5.5.2 利用一条傍轴光线表示的赛德尔公式 211
5.5.3 佩茨瓦尔定理 212
5.6 例子:一个薄透镜的初级像差 213
5.7 一般共轴透镜系统的色差 217
第6章 成像仪器 220
6.1 眼睛 220
6.2 照相机 221
6.3 折射望远镜 225
6.4 反射望远镜 230
6.5 照明仪器 233
6.6 显微镜 235
第7章 干涉理论基础和干涉仪 239
7.1 引言 239
7.2 两个单色波的干涉 239
7.3 双光束干涉:波阵面分割 242
7.3.1 杨氏实验 242
7.3.2 菲涅耳双面镜和类似装置 244
7.3.3 准单色光条纹和白光条纹 246
7.3.4 使用狭缝光源;条纹的可见度 247
7.3.5 应用于测量光程差:瑞利干涉仪 250
7.3.6 应用于测量光源的角幅度:迈克耳孙测星干涉仪 252
7.4 驻波 257
7.5 双光束干涉:振幅分割 261
7.5.1 平行平面板产生的条纹 261
7.5.2 薄膜产生的条纹;斐索干涉仪 265
7.5.3 条纹的定域 270
7.5.4 迈克耳孙干涉仪 278
7.5.5 特怀曼(Twyman)-格林(Green)干涉仪和有关干涉仪 280
7.5.6 两块全同板产生的条纹:雅满(Jamin)干涉仪和干涉显微镜 284
7.5.7 马赫-曾德尔干涉仪;贝茨波阵面切变干涉仪 289
7.5.8 相干长度;双光束干涉在研究光谱线精细结构中的应用 293
7.6 多光束干涉 299
7.6.1 平行平面板的多光束干涉条纹 299
7.6.2 法布里-珀罗干涉仪 304
7.6.3 应用法布里-珀罗干涉仪研究光谱线的精细结构 308
7.6.4 应用法布里-珀罗干涉仪比较波长 313
7.6.5 陆末-格尔克干涉仪 316
7.6.6 干涉滤波器 321
7.6.7 薄膜多光束干涉条纹 324
7.6.8 两块平行平面板产生的多光束条纹 333
(a)单色光和准单色光生成的条纹 333
(b)叠加条纹 336
7.7 波长与标准米的比较 340
第8章 衍射理论基础 342
8.1 引言 342
8.2 惠更斯-菲涅耳原理 342
8.3.1 基尔霍夫积分定理 347
8.3 基尔霍夫衍射理论 347
8.3.2 基尔霍夫衍射理论 349
8.3.3 夫琅禾费衍射和菲涅耳衍射 353
8.4 过渡到标量理论 357
8.4.1 单色振子产生的像场 357
8.4.2 总像场 360
8.5 各种形状光孔上的夫琅禾费衍射 362
8.5.1 矩孔和狭缝 362
8.5.2 圆孔 365
8.5.3 其他形状的孔 368
8.6 光学仪器中的夫琅禾费衍射 371
8.6.1 衍射光栅 371
(a)衍射光栅原理 371
(b)光栅的类型 376
(c)光栅摄谱仪 380
8.6.2 成像系统的分辨本领 382
8.6.3 显微镜中的成像 385
(a)不相干照明 386
(b)相干照明——阿贝理论 387
(c)相干照明——泽尼克相衬观察法 391
8.7 直边菲涅耳衍射 395
8.7.1 衍射积分 395
8.7.2 菲涅耳积分 397
8.7.3 直边菲涅耳衍射 400
8.8 焦点附近的三维光分布状态 401
8.8.1 用洛默尔函数计算衍射积分 402
8.8.2 强度分布 406
(a)几何焦平现上的强度分布 407
(b)轴上的强度分布 408
(c)几何阴影边界上的强度分布 408
8.8.3 积分强度 409
8.8.4 位相特性 411
8.9 边界衍射波 415
8.10 加伯波前重建成像法(全息学) 418
8.10.1 正全息图的制作 419
8.10.2 重建 420
8.11 瑞利-索末菲衍射积分 425
8.11.1 瑞利衍射积分 425
8.11.2 瑞利-索末菲衍射积分 427