1 High-Resolution Scanning Electron Microscopy 1
1.1 Introduction:Scanning Electron Microscopy and Nanotechnology 1
1.2 Electron-Specimen Interactions 5
1.2.1 Electron-Specimen Interactions in Homogeneous Materials 6
1.2.2 Electron-Speciment Interactions in Composite Samples 8
1.3 Instrumentation of/the Scanning Electron Microscope 10
1.3.1 General Description 10
1.3.2 Performance of a Scanning Electron Microscope 13
1.4 The Resolution of Secondary and Backscattered Electron Images 18
Contents 19
List of Contributors 19
1.5 Contrast Mechanisms of SE and BE Images of Nanoparticles and Other Systems 21
1.5.1 Small Particle Contrast in High-Resolution BE Images 22
1.5.2 Small Particle Contrast in High-Resolution SE Images 25
1.5.3 Other Contrast Mechanisms 28
1.6 Applications to Characterizing Nanophase Materials 29
References 35
2 High Spatial Resolution Quantitative Electron Beam Microanalysis for Nanoscale Materials 37
2.1 Introduction 37
2.2 The Nanomaterials Characterization Challenge:Bulk Nanostructures and Discrete Nanoparticles 37
2.2.1 Bulk Nanostructures 38
2.2.2 Nanoparticles 40
2.3 Physical Basis of the Electron-Excited Analytical Spectrometries 40
2.4 Nanoscale Elemental Characterization with High Electron Beam Energy 42
2.4.1 EELS 42
2.4.2 X-ray Spectrometry 48
1.7 Summary and Perspectives 52
2.5 Nanoscale Elemental Characterization with Low and Intermediate Electron Beam Energy 55
2.5.1 Intermediate Beam Energy X-ray Microanalysis 56
2.5.2 Low Beam Energy X-ray Microanalysis:Bulk Nanostructures 59
2.5.3 Auger Spectrometry 62
2.5.4 Elemental Mapping 65
2.6 Examples of Applications to Nanoscale Materials 65
2.6.1 Analytical Electron Microscopy 65
2.6.2 Low Voltage SEM 69
2.6.3 Auger/X-ray SEM 73
2.7 Conclusions 73
References 74
3 Characterization of Nano-Crystalline Materials Using Electron Backscatter Diffraction in the Scanning Electron Microscope 77
3.1 Introduction 77
3.2 Historical Development of EBSD 78
3.3 Origin of EBSD Patterns 79
3.3.1 Collection of EBSD Patterns 80
3.3.2 Automated Orientation Mapping 83
3.4.1 Lateral Resolution 84
3.4 Resolution of EBSD 84
3.4.2 Depth Resolution 88
3.5 Sample Preparation of Nano-Materials for EBSD 88
3.6 Applications of EBSD to Nano-Materials 89
3.6.1 Heteroepitaxy of Boron Arsenide on[0001]6H-Sic 89
3.6.2 Electrodeposited Ni for MEMS Applications 91
3.6.3 Polycrystalline Si For MEMS Applications 93
3.7 Summary 95
References 95
4 High Resolution Transmission Electron Microscopy 97
4.1 HRTEM and Nanotechnology 97
4.2 Principles and Practice of HRTEM 97
4.2.1 Basis of Image Formation 97
4.2.2 Definitions of Resolution 99
4.2.3 Lattice Imaging or Atomic Imaging 101
4.2.4 Instrumental Parameters 102
4.2.5 Further Requirements 103
4.2.6 Milestones 104
4.3 Applications of HRTEM 105
4.3.1 Semiconductors 105
4.3.2 Metals 107
4.3.3 Oxides and Ceramics 110
4.3.4 Surfaces 112
4.3.5 Dynamic Events 113
4.4 Current Trends 114
4.4.1 Image Viewing and Recording 114
4.4.2 On-Line Microscope Control 115
4.4.3 Detection and Correction of Third-Order Aberrations 116
4.4.4 Quantitative HRTEM 117
4.4.5 Aberration-Corrected HRTEM 118
4.5.1 The Stobbs'Factor 119
4.5 Ongoing Problems 119
4.5.2 Radiation Damage 120
4.5.3 Inversion of Crystal Scattering 120
4.6 Summary and Future Perspective 121
References 121
5 Scanning Transmission Electron Microscopy 127
5.1 Introduction 127
5.2 STEM Imaging 131
5.3 STEM Imaging of Crystals 138
5.3.1 Very Thin Crystals 138
5.3.2 Dynamical Diffraction Effects 140
5.3.3 Channeling 141
5.4 Diffraction in STEM Instruments 142
5.4.1 Scanning Mode Electron Diffraction 142
5.4.2 Two-Dimensional Recording Systems 142
5.4.3 Convergent-Beam Electron Diffraction 143
5.4.4 Coherent Nanodiffraction 145
5.5 Microanalysis in STEM 146
5.5.1 Electron Energy Loss Spectroscopy and Imaging 146
5.5.2 Secondary Emissions 146
5.6 Studies of Nanoparticles and Nanotubes 147
5.6.1 Nanoparticles 147
5.6.2 Nanotubes and Nanoshells 148
5.7 Studies of Crystal Defects and Interfaces 150
5.8 The Structure and Composition of Surfaces 152
5.8.1 Ultra-High Vacuum Instruments 152
5.8.2 Reflection Electron Microscopy 152
5.8.3 Surface Channeling Effects 154
5.8.4 MEED and MEEM 154
5.9 Amorphous Materials 154
5.9.1 Thin Quasi-Amorphous Films 154
5.9.2 Thick Amorphous Films 155
5.10 STEM Holography 156
5.10.1 Gabor's In-Line Holography 156
5.10.2 Off-Axis Holography 157
5.11 Ultra-High-Resolution STEM 159
5.11.1 Atomic Focusers 159
5.11.2 Aberration Correction 159
5.11.3 Combining Nanodiffraction and Imaging 161
5.12 Conclusions 162
References 163
6 In-situ Electron Microscopy for Nanomeasurements 169
6.1 Introduction 169
6.2 Thermal Induced Surface Dynamic Processes of Nanocrystals 169
6.3 Measuring Dynamic Bending Modulus by Electric Field Induced Mechanical Resonance 171
6.3.1 Young's Modulus Measured by Quantifying Thermal Vibration Amplitude 171
6.3.2 Bending Modulus by Electric Field Induced Mechanical Resonance 173
6.4 Young's Modulus of Composite Nanowires 181
6.5 Bending Modulus of Oxide Nanobelts 184
6.5.1 Nanobelts 184
6.5.2 Dual-mode Resonance of Nanobelts 185
6.5.3 Bending Modulus of Nanobelt 187
6.6 Nanobelts as Nanocantilevers 188
6.7 In-situ Field Emission from Nanotube 189
6.8 Work Function at the Tips of Nanotubes and Nanobelts 190
6.9 Mapping the Electrostatic Potential at the Nanotube Tips 193
6.10 Field Emission Induced Structural Damage 195
6.11 Nanothermometer and Nanobearing 197
6.12 In-situ Transport Measurement of Nanotubes 197
6.12.1 Ballistic Quantum Conductance at Room Temperature 197
6.12.2 Quantum Conductance and Surface Contamination 199
6.12.3 Top Layer Transport in MWNT 203
6.13 Summary 204
References 205
7 Environmental Transmission Electron Microscopy in Nanotechnology 209
7.1 Introduction 209
7.2 History of ETEM 211
7.2.1 Early Developments 211
7.2.2 Later Developments and Current Status 212
7.3 Data Collection 215
7.3.1 Real-Time Imaging Systems 215
7.3.2 Spectroscopy and Chemical Analysis 217
7.4 Experimental Design Strategies 218
7.5 Applications to Nanomaterials 220
7.5.1 Transformation Mechanisms in Nanostructures due to Gas-solid Reactions 220
7.5.2 Controlled Synthesis of Nanostructures 229
7.5.3 Kinetics 233
7.6 Conclusions 239
References 240
8 Electron Nanocrystallography 243
8.1 Introduction 243
8.2 Electron Diffraction Modes and Geometry 244
8.2.1 Selected Area Electron Diffraction 245
8.2.2 Nano-Area Electron Diffraction 246
8.2.3 Convergent Beam Electron Diffraction 247
8.3 Theory of Electron Diffraction 249
8.3.1 Kinematic Electron Diffraction and Electron Atomic Scattering 249
8.3.2 Kinematical Electron Diffraction from an Assembly of Atoms 251
8.3.3 Geometry of Electron Diffraction from Perfect Crystals 254
8.3.4 The Geometry of a CBED Pattern 257
8.3.5 Electron Dynamic Theory—the Bloch Wave Method 257
8.4 Experimental Analysis 260
8.4.1 Experimental Diffraction Pattern Recording 260
8.4.2 The Phase Problem and Inversion 262
8.4.3 The Refinement Technique 263
8.4.4 Electron Diffraction Oversampling and Phase Retrieval for Nanomaterials 267
8.5 Applications to Nanostructure Characterization 268
8.5.1 Structure Determination of Individual Single-Wall Carbon Nanotubes 268
8.5.2 The Structure of Supported Small Nanoclusters and Epitaxy 271
8.5.3 Crystal Charge Density 273
8.6 Conclusions and Future Perspectives 275
References 275
9 Tomography Using the Transmission Electron Microscope 279
9.1 Introduction 279
9.2 Tomography 281
9.2.1 A History of Tomography 281
9.2.2 The Radon Transform 282
9.2.3 The Central Slice Theorem and Fourier Space Reconstruction 283
9.2.4 Real Space Reconstruction Using Backprojection 284
9.3.1 Acquisition 287
9.3 Tomography in the Electron Microscope 287
9.3.2 Alignment 288
9.3.3 Anisotropic Resolution 289
9.3.4 The Projection Requirement 292
9.4 STEM HAADF Tomography 293
9.5 EFTEM Tomography 299
9.6 Conclusions 302
References 303
10 Off-Axis Electron Holography 307
10.1 Electron Holography and Nanotechnology 307
10.2 Description of Off-Axis Electron Holography 308
10.2.1 Experimental Set-up 308
10.2.2 Basic Imaging Theory and Hologram Reconstruction 310
10.2.3 Phase Shifts and Mean Inner Potential 312
10.2.4 Quantification 314
10.2.5 Practical Considerations 315
10.3 Nanoscale Electrostatic Fields 316
10.3.1 Dopant Profiles 317
10.3.2 Piezoelectric Fields 317
10.3.3 Charged Defects 318
10.3.4 Field-Emitting Carbon Nanotubes 320
10.3.5 Thickness and Sample Morphology 321
10.4 Nanoscale Magnetic Fields 321
10.4.1 Patterned Nanostructures 322
10.4.2 Nanoparticle Chains 325
10.5 Future Perspectives 327
References 328
11 Sub-nm Spatially Resolved EELS(Electron Energy-Loss Spectroscopy):Methods,Theory and Applications 331
11.1 Introduction:EELS and Nanotechnology 331
11.2.1 Definition of an EELS Spectrum and of the Basic Information Which It Contains 332
11.2 Understanding the Information Contained in an EELS Spectrum 332
11.2.2 Basic Tools Developed for Interpreting and Using Core-Loss Signals 336
11.3 Spatially Resolved EELS 341
11.3.1 The 3D Data Cube 341
11.3.2 Instrumentation Required for Recording the 3D Data Cube,Definition and Estimate of the Spatial and Energy Resolutions 343
11.4 Elemental Mapping of Individual Nanoparticles Using Core-loss Signals 348
11.4.1 Data Processing Routines:Background Subtraction,Multiple Least Square Fitting 348
11.4.2 A Few Examples of Elemental Mapping with EELS Core Edges 350
11.4.3 Sensitivity,Limits of Detection in EELS Elemental Mapping 352
11.5 Mapping Bonding States and Electronic Structures with ELNES Features 352
11.5.1 A Few Selected Examples 353
11.5.2 From Fingerprint Techniques to Interpretations Requiring Extended Theoretical Calculations 355
11.6 Conclusions 357
References 357
12.1 Introduction 361
12 Imaging Magnetic Structures Using TEM 361
12.2 Lorentz Microscopy 362
12.2.1 Introduction 362
12.2.2 Magnetic-Shield Lens 362
12.2.3 Deflection Angle Due to Lorentz Force 363
12.2.4 Fresnel Mode 364
12.2.5 Foucault Mode 371
12.2.6 Lorentz Phase Microscopy 372
12.3 Electron Holography 376
12.3.1 Introduction 376
12.3.2 Observation of Single Magnetic Domain Particles 377
12.3.3 Real-time Observation 377
12.3.4 High-precision Observation 381
12.4 Summary 392
References 392
Index 395