《电力系统工程》PDF下载

  • 购买积分:27 如何计算积分?
  • 作  者:(印)科萨里,纳格拉斯著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2009
  • ISBN:9787302215738
  • 页数:1074 页
图书介绍:本书内容可分为两部分。第一部分是电力系统工程的基础知识,内容包括输电线参数和特性,潮流计算,故障分析,电力系统优化运行和自动发电控制等。第二部分内容包括地下电缆,架空线绝缘子,输电线机械设计,电晕,HVDC输电等。

1.Introduction 1

1.1 Electric Power System 1

1.2 Indian Power Sector 2

1.3 A Contemporary Perspective 2

1.4 Structure of Power Systems 14

1.5 Conventional Sources of Electric Energy 16

1.6 Magnetohydrodynamic(MHD)Generation 35

1.7 Geothermal Energy 36

1.8 Environmental Aspects of Electric Energy Generation 37

1.9 Renewable Energy Resources 42

1.10 Solar Energy and its Utilization 43

1.11 Wind Power 59

1.12 Biofuels 66

1.13 Generating Reserve,Reliability and Certain Factors 67

1.14 Energy Storage 71

1.15 Energy Conservation 75

1.16 Growth of Power Systems in India 77

1.17 Deregulation 79

1.18 Distributed and Dispersed Generation 82

1.19 Power System Engineers and Power System Studies 83

1.20 Use of Computers and Microprocessors 83

1.21 Problems Facing Indian Power Industry and its Choices 84

Annexure 1.1 87

Annexure 1.2 87

2.Inductance and Resistance of Transmission Lines 95

2.1 Introduction 95

2.2 Definition of Inductance 95

2.3 Flux Linkages of an Isolated Current-Carrying Conductor 96

2.4 Inductance of a Single-Phase Two-Wire Line 100

2.5 Conductor Types 102

2.6 Flux Linkages of One Conductor in a Group 103

2.7 Inductance of Composite Conductor Lines 104

2.8 Inductance of Three-Phase Lines 109

2.9 Double-Circuit Three-Phase Lines 116

2.10 Bundled Conductors 119

2.11 Resistance 121

2.12 Skin Effect and Proximity Effect 122

2.13 Magnetic Field Induction 123

2.14 Summary 123

3.Capacitance of Transmission Lines 127

3.1 Introduction 127

3.2 Electric Field of a Long Straight Conductor 127

3.3 Potential Difference between Two Conductors of a Group of Parallel Conductors 128

3.4 Capacitance of a Two-Wire Line 129

3.5 Capacitance of a Three-Phase Line with Equilateral Spacing 131

3.6 Capacitance of a Three-Phase Line with Unsymmetrical Spacing 132

3.7 Effect of Earth on Transmission Line Capacitance 134

3.8 Method of GMD(Modified) 142

3.9 Bundled Conductors 142

3.10 Electrostatic Induction 143

3.11 Summary 143

4.Representation of Power System Components 146

4.1 Introduction 146

4.2 Single-Phase Representation of Balanced Three-Phase Networks 146

4.3 The One-Line Diagram and the Impedance or Reactance Diagram 148

4.4 Per Unit(PU)System 150

4.5 Complex Power 156

4.6 The Steady State Model of Synchronous Machine 159

4.7 Power Transformer 172

4.8 Transmission of Electric Power 172

4.9 System Protection 172

4.10 Representation of Loads 174

4.11 Summary 175

5.Characteristics and Performance of Power Transmission Lines 177

5.1 Introduction 177

5.2 Short Transmission Line 178

5.3 Medium Transmission Line 186

5.4 The Long Transmission Line—Rigorous Solution 188

5.5 The Equivalent Circuit of a Long Line 192

5.6 Interpretation of the Long Line Equations 198

5.7 Ferranti Effect 204

5.8 Tuned Power Lines 206

5.9 Power Flow Through a Transmission Line 207

5.10 Methods of Voltage Control 223

5.11 Summary 231

6.Load Flow Studies 235

6.1 Introduction 235

6.2 Network Model Formulation 237

6.3 Formation of YBUS by Singular Transformation 247

6.4 Load Flow Problem 253

6.5 Gauss-Siedel Method 263

6.6 Newton-Raphson Method 274

6.7 Decoupled Load Flow Studies 290

6.8 Comparison of Load Flow Methods 301

6.9 Control of Voltage Profile 303

6.10 Load Flow under Power Electronic Control 312

6.11 Summary 318

7.Optimal System Operation 331

7.1 Introduction 331

7.2 Optimal Operation of Generators on a Bus Bar 332

7.3 Optimal Unit Commitment(UC) 345

7.4 Reliability Considerations 349

7.5 Optimal Generation Scheduling 354

7.6 Optimal Load Flow Solution 368

7.7 Optimal Scheduling of Hydrothermal System 376

7.8 Power System Security 383

7.9 Maintenance Scheduling(MS) 389

7.10 Power-System Reliability 389

7.11 Summary 394

Annexure 7.1 402

8.Automatic Generation and Voltage Control 409

8.1 Introduction 409

8.2 Load Frequency Control(Single Area Case) 410

8.3 Load Frequency Control and Economic Despatch Control 424

8.4 Two-Area Load Frequency Control 425

8.5 Optimal(Two-Area)Load Frequency Control 431

8.6 Automatic Voltage Control 437

8.7 Load Frequency Control with Generation Rate Constraints(GRCs) 439

8.8 Speed Governor Dead-Band and its Effect on AGC 440

8.9 Digital LF Controllers 441

8.10 Decentralized Control 442

8.11 Discrete Integral Controller for AGC 443

8.12 AGC in a Restructured Power System 443

8.13 Summary 449

9.Symmetrical Fault Analysis 453

9.1 Introduction 453

9.2 Transient on a Transmission Line 454

9.3 Short Circuit of a Synchronous Machine 456

9.4 Short Circuit of a Loaded Synchronous Machine 465

9.5 Selection of Circuit Breakers 470

9.6 Algorithm for Short Circuit Studies 475

9.7 ZBUS Formulation 480

9.8 Summary 489

10.Symmetrical Components 495

10.1 Introduction 495

10.2 Symmetrical Component Transformation 496

10.3 Phase Shift in Star-Delta Transformers 502

10.4 Sequence Impedances of Transmission Lines 505

10.5 Sequence Impedances and Sequence Network of Power System 507

10.6 Sequence Impedances and Networks of Synchronous Machine 507

10.7 Sequence Impedances of Transmission Lines 511

10.8 Sequence Impedances and Networks of Transformers 512

10.9 Construction of Sequence Networks of a Power System 515

10.10 Summary 519

11.Unsymmetrical Fault Analysis 523

11.1 Introduction 523

11.2 Symmetrical Component Analysis of Unsymmetrical Faults 524

11.3 Single Line-to-Ground(LG)Fault 525

11.4 Line-to-Line(LL)Fault 528

11.5 Double Line-to-Ground(LLG)Fault 530

11.6 Open Conductor Faults 540

11.7 Bus Impedance Matrix Method for Analysis of Unsymmetrical Shunt Faults 542

11.8 Summary 552

12.Power System Stability 558

12.1 Introduction 558

12.2 Dynamics of a Synchronous Machine 560

12.3 Power Angle Equation 565

12.4 Node Elimination Technique 570

12.5 Simple Systems 577

12.6 Steady State Stability 579

12.7 Transient Stability 584

12.8 Equal Area Criterion 586

12.9 Numerical Solution of Swing Equation 605

12.10 Multimachines Stability 612

12.11 Some Factors Affecting Transient Stability 622

12.12 Summary 631

13.Power System Transients 635

13.1 Introduction 635

13.2 Types of System Transients 635

13.3 Traveling Waves and Propagation of Surges 637

13.4 Generation of Overvoltages on Transmission Lines 658

13.5 Protection of Transmission Lines Against Lightning 661

13.6 Protection of Power System Apparatus Against Surges 663

13.7 Insulation Coordination 668

13.8 Lightning Phenomena 673

13.9 Neutral Grounding 676

13.10 Summary 679

14.Circuit Breakers 682

14.1 Circuit Breaking Transients 682

14.2 Circuit Breaker Rating 694

14.3 Arc and Arc Extinction 695

14.4 Circuit Breaker Types 699

14.5 HVDC Circuit Breakers 712

14.6 Testing of HVAC Circuit Breakers 715

14.7 Isolators 719

14.8 Fuses 720

14.9 Contactors 720

14.10 Summary 721

15.Power System Protection 723

15.1 Introduction 723

15.2 Protective Zones 724

15.3 Relaying Elements and Quantities 726

15.4 Current and Voltage Transformers 728

15.5 Relay Types and Characteristics 734

15.6 Relay Hardware 746

15.7 Relay Connections 761

15.8 Protection of Transmission Lines 767

15.9 Generator/Motor Protection 785

15.10 Transformer Protection 791

15.11 Sequence Filters 796

15.12 Microprocessor-Based Relaying 798

15.13 Numerical(Digital)Relay 803

15.14 Recent Trends 805

15.15 Summary 807

16.Underground Cables 810

16.1 Introduction 810

16.2 Types of Cables 810

16.3 Capacitance of Single-Core Cable 813

16.4 Grading of Cables 814

16.5 Power Factor and Heating of Cables 822

16.6 Capacitance of 3-Core Belted Cable 823

16.7 D.C.Cables 826

16.8 Summary 827

17.Insulators for Overhead Lines 829

17.1 Introduction 829

17.2 Types of Insulators 829

17.3 Potential Distribution Over a String of Suspension Insulators 830

17.4 Methods of Equalizing Potential 832

17.5 Insulator Failure 836

17.6 Testing of Insulators 836

17.7 Summary 840

18.Mechanical Design of Transmission Lines 841

18.1 Introduction 841

18.2 Sag and Tension Calculations 841

18.3 Spans of Unequal Length:Ruling or Equivalent Span 847

18.4 Vibration and Vibration Dampers 848

18.5 Summary 850

19.Corona 852

19.1 Introduction 852

19.2 Critical Disruptive Voltage 852

19.3 Conditions Affecting Corona 854

19.4 Corona Loss 855

19.5 Corona in HVDC Lines 856

19.6 Practical Importance of Corona 857

19.7 Summary 857

20.High Voltage DC(HVDC)Transmission 860

20.1 Introduction 860

20.2 Convertor Basics 861

20.3 Types of DC Links(Transmission Modes) 864

20.4 Structure of HVDC Transmission 866

20.5 Principles of HVDC Control 868

20.6 Economic Considerations 869

20.7 HVDC Applications 871

20.8 Advantages and Disadvantages of HVDC Systems 872

20.9 Three-Phase Bridge Converter Performance 873

20.10 Rectifier 874

20.11 Inverter 877

20.12 Circuit Breaking:Some Topics in HVDC 882

20.13 Recent Advances 883

20.14 Future Trends 884

20.15 Summary 885

21.Distribution Systems 886

21.1 Introduction 886

21.2 Types of Distribution Systems 887

21.3 Section and Size of Feeders 890

21.4 Voltage Drop in DC Distributors 894

21.5 Summary 899

22.Voltage Stability 902

22.1 Introduction 902

22.2 Comparison of Angle and Voltage Stability 903

22.3 Reactive Power Flow and Voltage Collapse 904

22.4 Mathematical Formulation of Voltage Stability Problem 905

22.5 Voltage Stability Analysis 908

22.6 Prevention of Voltage Collapse 911

22.7 State-of-the-Art,Future Trends and Challenges 912

22.8 Summary 914

Appendix A 917

Appendix B 929

Appendix C 935

Appendix D 941

Appendix E 944

Appendix F 946

Appendix G 952

Appendix H 989

Appendix I 994

Appendix J 998

Multiple Choice Questions 1008

Answer to Problems 1054

Index 1063