《DIGITAL INTEGRATED CIRCUITS》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:
  • 出 版 社:
  • 出版年份:2222
  • ISBN:
  • 页数:763 页
图书介绍:

Part 1 The Fabrics 1

Chapter 1 Introduction 3

1.1 A Historical Perspective 4

1.2 Issues in Digital Integrated Circuit Design 6

1.3 Quality Metrics of a Digital Design 15

1.3.1 Cost of an Integrated Circuit 16

1.3.2 Functionality and Robustness 18

1.3.3 Performance 27

1.3.4 Power and Energy Consumption 30

1.4 Summary 31

1.5 To Probe Further 31

Reference Books 32

References 33

Chapter 2 The Manufacturing Process 35

2.1 Introduction 36

2.2 Manufacturing CMOS Integrated Circuits 36

2.2.1 The Silicon Wafer 37

2.2.2 Photolithography 37

2.2.3 Some Recurring Process Steps 41

2.2.4 Simplified CMOS Process Flow 42

2.3 Design Rules—The Contract between Designer and Process Engineer 47

2.4 Packaging Integrated Circuits 51

2.4.1 Package Materials 52

2.4.2 Interconnect Levels 53

2.4.3 Thermal Considerations in Packaging 59

2.5 Perspective—Trends in Process Technology 61

2.5.1 Short-Term Developments 61

2.5.2 In the Longer Term 63

2.6 Summary 64

2.7 To Probe Further 64

References 64

Design Methodology Insert A IC LAYOUT 67

A.1 To Probe Further 71

References 71

Chapter 3 The Devices 73

3.1 Introduction 74

3.2 The Diode 74

3.2.1 A First Glance at the Diode—The Depletion Region 75

3.2.2 Static Behavior 77

3.2.3 Dynamic,or Transient,Behavior 80

3.2.4 The Actual Diode—Secondary Effects 84

3.2.5 The SPICE Diode Model 85

3.3 The MOS(FET) Transistor 87

3.3.1 A First Glance at the Device 87

3.3.2 The MOS Transistor under Static Conditions 88

3.3.3 The Actual MOS Transistor—Some Secondary Effects 114

3.3.4 SPICE Models for the MOS Transistor 117

3.4 A Word on Process Variations 120

3.5 Perspective—Technology Scaling 122

3.6 Summary 128

3.7 To Probe Further 129

References 130

Design Methodology Insert B Circuit Simulation 131

References 134

Chapter 4 The Wire 135

4.1 Introduction 136

4.2 A First Glance 136

4.3 Interconnect Parameters—Capacitance,Resistance,and Inductance 138

4.3.1 Capacitance 138

4.3.2 Resistance 144

4.3.3 Inductance 148

4.4 Electrical Wire Models 150

4.4.1 The Ideal wire 151

4.4.2 The Lumped Model 151

4.4.3 The Lumped RC Model 152

4.4.4 The Distributed rc Line 156

4.4.5 The Transmission Line 159

4.5 SPICE Wire Models 170

4.5.1 Distributed rc Lines in SPICE 170

4.5.2 Transmission Line Models in SPICE 170

4.5.3 Perspective:A Look into the Future 171

4.6Summary 174

4.7To Probe Further 174

References 174

Part 2 A Circuit Perspective 177

Chapter 5 The CMOS Inverter 179

5.1 Introduction 180

5.2 The Static CMOS Inverter—An Intuitive Perspective 180

5.3 Evaluating the Robustness of the CMOS Inverter:The Static Behavior 184

5.3.1 Switching Threshold 185

5.3.2 Noise Margins 188

5.3.3 Robustness Revisited 191

5.4 Performance of CMOS Inverter:The Dynamic Behavior 193

5.4.1 Computing the Capacitances 194

5.4.2 Propagation Delay:First-Order Analysis 199

5.4.3 Propagation Delay from a Design Perspective 203

5.5 Power,Energy,and Energy Delay 213

5.5.1 Dynamic Power Consumption 214

5.5.2 Static Consumption 223

5.5.3 Putting It All Together 225

5.5.4 Analyzing Power Consumption Using SPICE 227

5.6 Perspective:Technology Scaling and its Impact on the Inverter Metrics 229

5.7 Summary 232

5.8 To Probe Further 233

References 233

Chapter 6 Designing Combinational Logic Gates in CMOS 235

6.1 Introduction 236

6.2 Static CMOS Design 236

6.2.1 Complementary CMOS 237

6.2.2 Ratioed Logic 263

6.2.3 Pass-Transistor Logic 269

6.3 Dynamic CMOS Design 284

6.3.1 Dynamic Logic:Basic Principles 284

6.3.2 Speed and Power Dissipation of Dynamic Logic 287

6.3.3 Signal Integrity Issues in Dynamic Design 290

6.3.4 Cascading Dynamic Gates 295

6.4 Perspectives 303

6.4.1 How to Choose a Logic Style? 303

6.4.2 Designing Logic for Reduced Supply Voltages 303

6.5 Summary 306

6.6 To Probe Further 307

References 308

Design Methodology Insert C How to Simulate Complex Logic Circuits 309

C.1 Representing Digital Data as a Continuous Entity 310

C.2 Representing Data as a Discrete Entity 310

C.3 Using Higher-Level Data Models 315

References 317

Design Methodology Insert D Layout Techniques for Complex Gates 319

Chapter 7 Designing Sequential Logic Circuits 325

7.1 Introduction 326

7.1.1 Timing Metrics for Sequential Circuits 327

7.1.2 Classification of Memory Elements 328

7.2 Static Latches and Registers 330

7.2.1 The Bistability Principle 330

7.2.2 Multiplexer-Based Latches 332

7.2.3 Master-Slave Edge-Triggered Register 333

7.2.4 Low-Voltage Static Latches 339

7.2.5 Static SR Flip-Flops—Writing Data by Pure Force 341

7.3 Dynamic Latches and Registers 344

7.3.1 Dynamic Transmission-Gate Edge-triggered Registers 344

7.3.2 C 2MOS—A Clock-Skew Insensitive Approach 346

7.3.3 True Single-Phase Clocked Register (TSPCR) 350

7.4 Alternative Register Styles 354

7.4.1 Pulse Registers 354

7.4.2 Sense-Amplifier-Based Registers 356

7.5 Pipelining:An Approach to Optimize Sequential Circuits 358

7.5.1 Latch- versus Register-Based Pipelines 360

7.5.2 NORA-CMOS—A Logic Style for Pipelined Structures 361

7.6 Nonbistable Sequential Circuits 364

7.6.1 The Schmitt Trigger 364

7.6.2 Monostable Sequential Circuits 367

7.6.3 Astable Circuits 368

7.7 Perspective:Choosing a Clocking Strategy 370

7.8 Summary 371

7.9 To Probe Further 372

References 372

Part 3 A System Perspective 375

Chapter 8 Implementation Strategies for Digital ICS 377

8.1 Introduction 378

8.2 From Custom to Semicustom and Structured-Array Design Approaches 382

8.3 Custom Circuit Design 383

8.4 Cell-Based Design Methodology 384

8.4.1 Standard Cell 385

8.4.2 Compiled Cells 390

8.4.3 Macrocells,Megacells and Intellectual Property 392

8.4.4 Semicustom Design Flow 396

8.5 Array-Based Implementation Approaches 399

8.5.1 Prediffused (or Mask-Programmable) Arrays 399

8.5.2 Prewired Arrays 404

8.6 Perspective—The Implementation Platform of the Future 420

8.7 Summary 423

8.8 To Probe Further 423

References 424

Design Methodology Insert E Characterizing Logic and Sequential Cells 427

References 434

Design Methodology Insert F Design Synthesis 435

References 443

Chapter 9 Coping with Interconnect 445

9.1 Introduction 446

9.2 Capacitive Parasitics 446

9.2.1 Capacitance and Reliability—Cross Talk 446

9.2.2 Capacitance and Performance in CMOS 449

9.3 Resistive Parasitics 460

9.3.1 Resistance and Reliability—Ohmic Voltage Drop 460

9.3.2 Electromigration 462

9.3.3 Resistance and Performance—RC Delay 464

9.4 Inductive Parasitics 469

9.4.1 Inductance and Reliability— Voltage Drop 469

9.4.2 Inductance and Performance—Transmission-line Effects 475

9.5 Advanced Interconnect Techniques 480

9.5.1 Reduced-Swing Circuits 480

9.5.2 Current-Mode Transmission Techniques 486

9.6 Perspective:Networks-on-a-Chip 487

9.7 Summary 488

9.8 To Probe Further 489

References 489

Chapter 10 Timing Issues in Digital Circuits 491

10.1 Introduction 492

10.2 Timing Classification of Digital Systems 492

10.2.1 Synchronous Interconnect 492

10.2.2 Mesochronous interconnect 493

10.2.3 Plesiochronous interconnect 493

10.2.4 Asynchronous Interconnect 494

10.3 Synchronous Design—An In-depth Perspective 495

10.3.1 Synchronous Timing Basics 495

10.3.2 Sources of Skew and Jitter 502

10.3.3 Clock-Distribution Techniques 508

10.3.4 Latch-Based Clocking 516

10.4 Self-Timed Circuit Design 519

10.4.1 Self-Timed Logic—An Asynchronous Technique 519

10.4.2 Completion-Signal Generation 522

10.4.3 Self-Timed Signaling 526

10.4.4 Practical Examples of Self-Timed Logic 531

10.5 Synchronizers and Arbiters 534

10.5.1 Synchronizers—Concept and Implementation 534

10.5.2 Arbiters 538

10.6 Clock Synthesis and Synchronization Using a Phase-Locked Loop 539

10.6.1 Basic Concept 540

10.6.2 Building Blocks of a PLL 542

10.7 Future Directions and Perspectives 546

10.7.1 Distributed Clocking Using DLLs 546

10.7.2 Optical Clock Distribution 548

10.7.3 Synchronous versus Asynchronous Design 549

10.8 Summary 550

10.9 To Probe Further 551

References 551

Design Methodology Insert G Design Verification 553

References 557

Chapter 11 Designing Arithmetic Building Blocks 559

11.1 Introduction 560

11.2 Datapaths in Digital Processor Architectures 560

11.3 The Adder 561

11.3.1 The Binary Adder:Definitions 561

11.3.2 The Full Adder:Circuit Design Considerations 564

11.3.3 The Binary Adder:Logic Design Considerations 571

11.4 The Multiplier 586

11.4.1 The Multiplier:Definitions 586

11.4.2 Partial-Product Generation 587

11.4.3 Partial-Product Accumulation 589

11.4.4 Final Addition 593

11.4.5 Multiplier Summary 594

11.5 The Shifter 594

11.5.1 Barrel Shifter 595

11.5.2 Logarithmic Shifter 596

11.6 Other Arithmetic Operators 596

11.7 Power and Speed Trade-offs in Datapath Structures 600

11.7.1 Design Time Power-Reduction Techniques 601

11.7.2 Run-Time Power Management 611

11.7.3 Reducing the Power in Standby (or Sleep) Mode 617

11.8 Perspective:Design as a Trade-off 618

11.9 Summary 619

11.10 To Probe Further 620

References 621

Chapter 12 Designing Memory and Array Structures 623

12.1 Introduction 624

12.1.1 Memory Classification 625

12.1.2 Memory Architectures and Building Blocks 627

12.2 The Memory Core 634

12.2.1 Read-Only Memories 634

12.2.2 Nonvolatile Read-Write Memories 647

12.2.3 Read-Write Memories (RAM) 657

12.2.4 Contents-Addressable or Associative Memory (CAM) 670

12.3 Memory Peripheral Circuitry 672

12.3.1 The Address Decoders 672

12.3.2 Sense Amplifiers 679

12.3.3 Voltage References 686

12.3.4 Drivers/Buffers 689

12.3.5 Timing and Control 689

12.4 Memory Reliability and Yield 693

12.4.1 Signal-to-Noise Ratio 693

12.4.2 Memory Yield 698

12.5 Power Dissipation in Memories 701

12.5.1 Sources of Power Dissipation in Memories 701

12.5.2 Partitioning of the Memory 702

12.5.3 Addressing the Active Power Dissipation 702

12.5.4 Data-Retention Dissipation 704

12.5.5 Summary 707

12.6 Case Studies in Memory Design 707

12.6.1 The Programmable Logic Array (PLA) 707

12.6.2 A 4-Mbit SRAM 710

12.6.3 A 1-Gbit NAND Flash Memory 712

12.7 Perspective:Semiconductor Memory Trends and Evolutions 714

12.8 Summary 716

12.9 To Probe Further 717

References 718

Design Methodology Insert H Validation and Test of Manufactured Circuits 721

H.1 Introduction 721

H.2 Test Procedure 722

H.3 Design for Testability 723

H.3.1 Issues in Design for Testability 723

H.3.2 Ad Hoc Testing 725

H.3.3 Scan-Based Test 726

H.3.4 Boundary-Scan Design 729

H.3.5 Built-in Self-Test (BIST) 730

H.4 Test-Pattern Generation 734

H.4.1 Fault Models 734

H.4.2 Automatic Test-Pattern Generation (ATPG) 736

H.4.3 Fault Simulation 737

H.5 To Probe Further 737

References 737

Problem Solutions 739

Index 745