《2013考研数学复习指南 理工类》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:陈文灯,黄先开主编
  • 出 版 社:北京:北京理工大学出版社
  • 出版年份:2012
  • ISBN:9787564052676
  • 页数:758 页
图书介绍:本书内容涵盖了考研数学的所有必考知识点,内容安排由基础到应用,共分三个篇。第一篇高等数学包括十三章,第二篇线性代数有六章,第三篇概论论与数理统计包括七章。每章中安排了一节思维定势和综合题分析,思维定势可以帮助考生很快找到解题的突破点。综合题分析能帮助同学们将各章知识点“珠联璧合”,以提高考生分析问题和解决问题的能力。本书可供各大院校理工类同学备考研究生入学数学考试之用,也作为其他社会人员参加研究生入学考试的复习参考书。

第一篇 高等数学 1

第一章 函数、极限和连续 1

第1节 重要概念、定理和公式的剖析 1

一、函数的基本性质 1

二、分段函数 5

三、反函数 5

四、复合函数 6

五、初等函数 9

六、函数的极限及其连续性 9

七、重要公式和定理 12

第2节 重要题型的解题方法和技巧 19

题型一 未定式的定值法 19

题型二 类未定式的计算 23

题型三 数列的极限 24

题型四 极限式中常数的确定(重点) 29

题型五 函数连续或间断点的判定 32

第3节 思维定势及综合题解析 34

一、思维定势 34

二、综合题解析 38

习题一 39

第二章 导数与微分 43

第1节 重要概念、定理和公式的剖析 43

一、导数与微分的定义 43

二、重要定理 45

三、导数与微分的运算法则 45

四、基本公式 45

五、弧微分与曲率 46

六、高阶导数的定义与基本公式 47

第2节 重要题型的解题方法和技巧 47

题型一 求复合函数的导数或微分 47

题型二 求参数方程的导数或微分 49

题型三 求隐函数的导数或微分 50

题型四 求幂指函数的导数或微分 50

题型五 求表达式为若干因子连乘积、乘方、开方或商形式的函数的导数或微分 51

题型六 求分段函数的导数或微分 51

题型七 求高阶导数 52

第3节 思维定势及综合题解析 56

一、思维定势 56

二、综合题解析 56

习题二 59

第三章 不定积分 62

第1节 重要概念、定理和公式的剖析 62

一、不定积分的基本概念 62

二、基本性质 62

三、基本公式 63

四、基本积分法 64

第2节 重要题型的解题方法和技巧 77

题型一 有理函数的不定积分 77

题型二 简单无理函数的不定积分 78

题型三 三角有理式的不定积分 79

题型四 含有反三角函数的不定积分 83

题型五 抽象函数的不定积分 83

题型六 分段函数的不定积分 84

第3节 思维定势及综合题解析 85

一、思维定势 85

二、综合题解析 86

习题三 88

第四章 定积分及反常积分 92

第1节 重要概念、定理和公式的剖析 92

一、基本性质 92

二、定理和公式 95

三、定积分的计算法 98

四、反常积分的基本概念 102

第2节 重要题型的解题方法和技巧 103

题型一 分段函数的定积分 103

题型二 被积函数带有绝对值符号的定积分 105

题型三 被积函数中含有“变限积分”的定积分 106

题型四 对称区间上的定积分 108

题型五 被积函数的分母为两项,而分子为其中一项的定积分 109

题型六 由三角有理式与其他初等函数通过四则运算或复合而成的定积分 110

题型七 已知一定积分,求另一定积分 111

题型八 定积分等式的证明 112

题型九 定积分不等式的证明 120

题型十 计算反常积分 125

题型十一 反常积分的判敛 126

第3节 思维定势及综合题解析 127

一、思维定势 127

二、综合题解析 128

习题四 129

第五章 微分中值定理 133

第1节 重要概念、定理和公式的剖析 133

第2节 重要题型的解题方法和技巧 134

题型一 闭区间上连续函数命题的证明 134

题型二 证明给出的函数f (x)满足某中值定理 137

题型三 证明某个函数恒等于一个常数的命题 138

题型四 命题f(n) (ξ)=0的证明 139

题型五 欲证结论:至少存在一点ξ∈ (a,b+),使得f(n) (ξ)=k(k≠ 0)或由a, b,f(a),f (b),ξ, f (ξ),f' (ξ),…, f(n) (ξ)所构成的代数式成立 140

题型六 欲证结证:在(a, b),内至少存在ξ,η(ξ≠ η)满足某个代数式 143

第3节 思维定势及综合题解析 144

一、思维定势 144

二、综合题解析 146

习题五 147

第六章 常微分方程 150

第1节 重要概念、定理和公式的剖析 150

一、基本概念 150

二、二阶线性微分方程解的结构 150

三、二阶常系数线性微分方程 152

四、n阶常系数线性微分方程 152

第2节 重要题型的解题方法和技巧 155

题型一 一阶微分方程的计算 155

题型二 可降阶的高阶方程的求解 164

题型三 计算二阶线性微分方程 165

题型四 欧拉方程的计算 168

题型五 微分方程的应用 170

第3节 思维定势及综合题解析 173

一、思维定势 173

二、综合题解析 173

习题六 175

第七章 一元微积分的应用 178

第1节 重要概念、定理和公式的剖析 178

一、函数的单调增减性定理 178

二、函数的极值与最值 179

三、函数凹凸性的判别与函数的拐点 180

四、微元法及其应用 182

第2节 重要题型的解题方法和技巧 184

题型一 求函数的极值 184

题型二 求函数的最值 185

题型三 关于方程根的讨论 186

题型四 函数渐近线的求解 191

题型五 函数作图 192

题型六 求平面图形的面积 193

题型七 求立体的体积 195

题型八 求平面曲线的弧长 196

题型九 求旋转体的侧面积 197

题型十 变力做功、引力、液体的静压力 198

第3节 思维定势与综合题解析 201

一、思维定势 201

二、综合题解析 202

习题七 205

第八章 无穷级数 208

第1节 重要概念、定理和公式的剖析 208

一、无穷级数的基本概念和性质 208

二、数项级数判敛法 209

三、函数项级数的概念 214

四、幂级数的概念和性质 214

五、傅里叶级数的概念及定理 216

第2节 重要题型的解题方法和技巧 219

题型一 正项级数的判敛 219

题型二 任意项级数的判敛 220

题型三 级数的证明或判敛 222

题型四 计算函数项级数收敛域 224

题型五 求幂级数的收敛域、收敛半径 226

题型六 函数在某点的幂级数展开 227

题型七 幂级数求和 229

题型八 数项级数求和 233

题型九 周期与非周期函数的傅里叶级数 236

第3节 思维定势及综合题解析 239

一、思维定势 239

二、综合题解析 239

习题八 241

第九章 矢量代数与空间解析几何 245

第1节 重要概念、定理和公式的剖析 245

一、矢量的概念及其性质 245

二、平面与直线 250

三、投影方程 251

四、曲面方程 253

第2节 重要题型的解题方法和技巧 257

题型一 求平面方程 257

题型二 求空间直线方程 259

第3节 思维定势及综合题解析 261

一、思维定势 261

二、综合题解析 261

习题九 262

第十章 多元函数微分学 265

第1节 重要概念、定理和公式的剖析 265

一、二元函数的定义 265

二、二元函数的极限及连续性 266

三、偏导数、全导数及全微分 267

四、基本定理 268

五、多元函数的极值 270

六、条件极值与无条件极值 271

第2节 重要题型的解题方法和技巧 271

题型一 简单显函数u= f (x,y,z)的微分法 271

题型二 复合函数微分法 272

题型三 隐函数微分法 275

题型四 空间曲线在某点处的切线和法平面方程 278

题型五 空间曲面在其上某点处的切平面和法线方程 279

题型六 求无条件极值 281

题型七 求条件极值 282

题型八 求最值 283

第3节 思维定势及综合题解析 285

一、思维定势 285

二、综合题解析 286

习题十 287

第十一章 重积分 290

第1节 重要概念、定理和公式的剖析 290

一、基本概念 290

二、性质 290

三、公式 293

四、二重积分的解题技巧 294

五、三重积分的解题技巧 296

第2节 重要题型的解题方法和技巧 298

题型一 更换二重积分的积分次序 298

题型二 选择二重积分的积分次序 300

题型三 二重积分坐标系的选择 302

题型四 分段函数的二重积分的计算 303

题型五 二重积分等式的证明 306

题型六 二重积分不等式的证明 308

题型七 更换三重积分的积分次序 310

题型八 三重积分的计算 310

第3节 思维定势及综合题解析 312

一、思维定势 312

二、综合题解析 313

习题十一 314

第十二章 曲线、曲面积分及场论初步 319

第1节 重要概念、定理和公式的剖析 319

一、曲线积分的概念和性质 319

二、曲线积分的基本定理 320

三、曲面积分的概念和性质 321

四、曲面积分的基本定理 322

五、场论初步 322

第2节 重要题型的解题方法和技巧 327

题型一 对弧长的曲线积分的计算 327

题型二 对坐标的曲线积分的计算 328

题型三 对面积的曲面积分的计算 333

题型四 对坐标的曲面积分的计算 334

题型五 曲面面积的计算 339

第3节 思维定势及综合题解析 340

一、思维定势 340

二、综合题解析 341

习题十二 342

第十三章 函数方程与不等式证明 344

第1节 函数方程 344

一、利用函数表示法与用何字母表示无关的“特性”求解方程 344

二、利用极限求解函数方程 345

三、利用导数的定义求解方程 346

四、利用交上限积分的可导性求解方程 346

五、利用连续函数的可积性及原函数的连续性求解 347

六、利用解微分方程的方法求解f (x) 348

第2节 不等式的证明 351

一、引入参数法 351

二、利用微分中值定理 352

三、利用函数的单调增减性(重点) 354

四、利用函数的极值与最值 356

五、利用函数图形的凹凸性 358

六、利用泰勒展开式 358

七、杂例 360

习题十三 361

第二篇 线性代数 364

第一章 行列式 364

第1节 重要概念、定理和公式的剖析 364

一、排列与逆序 364

二、n阶行列式的定义 365

三、行列式的基本性质 366

四、行列式按行(列)展开定理 369

五、重要公式与结论 370

第2节 重要题型的解题方法和技巧 371

题型一 抽象行列式的计算 371

题型二 低阶行列式的计算 372

题型三n阶行列式的计算 373

第3节 思维定势与综合题解析 379

一、思维定势 379

二、综合题解析 379

习题一 381

第二章 矩阵 384

第1节 重要概念、定理和公式的剖析 384

一、矩阵的概念 384

二、矩阵的运算 384

三、逆矩阵的概念 387

四、利用伴随矩阵求逆矩阵 387

五、矩阵的初等变换与求逆 388

六、分块矩阵及其求逆 389

七、矩阵的秩及其求法 390

第2节 重要题型的解题方法和技巧 390

题型一 求逆矩阵 390

题型二 求矩阵的高次幂Am 392

题型三 有关初等矩阵的命题 394

题型四 解矩阵方程 395

题型五 求矩阵的秩 397

题型六 关于矩阵对称、反对称命题的证明 398

题型七 关于方阵A可逆的证明 398

题型八与A的伴随阵A有关联的命题的证明 399

题型九 关于矩阵秩的命题的证明 400

第3节 思维定势与综合题解析 402

一、思维定势 402

二、综合题解析 404

习题二 404

第三章 向量 410

第1节 重要概念、定理和公式的剖析 410

一、向量的概念与运算 410

二、向量间的线性关系 410

三、向量组的秩和矩阵的秩 411

四、向量空间 412

五、重要定理与公式 414

六、小结 414

第2节 重要题型的解题方法和技巧 415

题型一 讨论向量组的线性相关性 415

题型二 有关向量组线性相关性命题的证明 418

题型三 判定一个向量是否可由一组向量线性表示 424

题型四 有关向量组线性表示命题的证明 426

题型五 求向量组的极大线性无关组 427

题型六 有关向量组或矩阵秩的计算与证明 429

题型七 与向量空间有关的命题 432

第3节 思维定势与综合题解析 434

一、思维定势 434

二、综合题解析 435

习题三 436

第四章 线性方程组 440

第1节 重要概念、定理和公式的剖析 440

一、克莱姆法则 440

二、线性方程组的基本概念 440

三、线性方程组解的判定 441

四、非齐次线性方程组与其导出组的解的关系 442

五、线性方程组解的性质 442

六、线性方程组解的结构 442

第2节 重要题型的解题方法和技巧 443

题型一 基本概念题(解的判定、性质、结构) 443

题型二 含有参数的线性方程组解的讨论 447

题型三 讨论两个方程组的公共解 451

题型四 有关基础解系的证明 453

第3节 思维定势与综合题解析 454

一、思维定势 454

二、综合题解析 455

习题四 460

第五章 特征值和特征向量 464

第1节 重要概念、定理和公式的剖析 464

一、矩阵的特征值和特征向量的概念 464

二、相似矩阵及其性质 464

三、矩阵可相似对角化的充要条件 465

四、实对称矩阵及其性质 465

五、重要公式与结论 465

第2节 重要题型的解题方法和技巧 466

题型一 求数值矩阵的特征值与特征向量 466

题型二 求抽象矩阵的特征值、特征向量 468

题型三 特征值、特征向量的逆问题 469

题型四 相似的判定及其逆问题 470

题型五 判断A是否可对角化 472

题型六 有关特征值、特征向量的证明题 475

第3节 思维定势与综合题解析 477

一、思维定势 477

二、综合题解析 477

习题五 483

第六章二次型 486

第1节 重要概念、定理和公式的剖析 486

一、二次型及其矩阵表示 486

二、化二次型为标准型 486

三、配方法和正交变换法 487

四、二次型和矩阵的正定性及其判别法 488

第2节 重要题型的解题方法和技巧 491

题型一 二次型所对应的矩阵及其性质 491

题型二 化二次型为标准形 492

题型三 已知二次型通过正交变换化为标准形,反求参数 496

题型四 有关二次型及其矩阵正定性的判定与证明 497

第3节 思维定势与综合题解析 499

一、思维定势 499

二、综合题解析 500

习题六 501

第三篇 概率论与数理统计 503

第一章 随机事件和概率 503

第1节 重要概念、定理和公式的剖析 503

一、随机试验和随机事件 503

二、事件的关系及其运算 504

三、事件的概率及其性质 506

四、条件概率与事件的独立性 507

五、重要概型 508

六、重要公式 508

第2节 重要题型的解题方法和技巧 509

题型一 古典概型与几何概型 509

题型二 事件的关系和概率性质的命题 513

题型三 条件概率与积事件概率的计算 515

题型四 全概率公式与Bayes公式的命题 516

题型五 有关Bernoulli概型的命题 518

第3节 思维定势与综合题解析 520

一、思维定势 520

二、综合题解析 521

习题一 522

第二章 随机变量及其分布 526

第1节 重要概念、定理和公式的剖析 526

一、概念与公式一览表 526

二、重要的一维分布 530

三、重要的二维分布 532

第2节 重要题型的解题方法和技巧 533

题型一 一维随机变量及其分布的概念、性质的命题 533

题型二 求一维随机变量的分布律、概率密度或分布函数 536

题型三 求一维随机变量函数的分布 540

题型四 二维随机变量及其分布的概念、性质的考查 542

题型五 求二维随机变量的各种分布与随机变量独立性的讨论 544

题型六 求两个随机变量的简单函数的分布 551

第3节 思维定势与综合题解析 556

一、思维定势 556

二、综合题解析 558

习题二 559

第三章 随机变量的数字特征 567

第1节 重要概念、定理和公式的剖析 567

一、一维随机变量的数字特征 567

二、二维随机变量的数字特征 569

三、几种重要的数学期望与方差 570

四、重要公式与结论 571

第2节 重要题型的解题方法和技巧 571

题型一 求一维随机变量的数字特征 571

题型二 求一维随机变量函数的数学期望 576

题型三 求二维随机变量及其函数的数字特征 578

题型四 有关数字特征的证明题 585

题型五 数字特征在经济中的应用 586

第3节 思维定势与综合题解析 589

一、思维定势 589

二、综合题解析 589

习题三 592

第四章 大数定律和中心极限定理 597

第1节 重要概念、定理和公式的剖析 597

一、切比雪夫不等式 597

二、中心极限定理 597

三、重要公式与结论 598

四、注意 598

第2节 重要题型的解题方法和技巧 598

题型一 有关切比雪夫不等式与大数定律的命题 598

题型二 有关中心极限定理的命题 600

习题四 603

第五章 数理统计的基本概念 604

第1节 重要概念、定理和公式的剖析 604

一、几个基本概念 604

二、三个抽样分布——X2分布、t分布与F 分布 605

三、正态总体下常用统计量的性质 605

四、重要公式与结论 606

五、经验分布函数 606

第2节 重要题型的解题方法和技巧 607

题型一 求统计量的数字特征或取值的概率、样本的容量 607

题型二 求统计量的分布 608

第3节 思维定势 610

习题五 611

第六章 参数估计 613

第1节 重要概念、定理和公式的剖析 613

一、矩估计与最大似然估计 613

二、估计量的评选标准 614

三、区间估计 615

四、重要公式与结论 617

第2节 重要题型的解题方法和技巧 617

题型一 求矩估计和最大似然估计 617

题型二 评价估计的优劣 621

题型三 区间估计或置信区间的命题 622

习题六 625

第七章 假设检验 628

第1节 重要概念、定理和公式的剖析 628

一、显著性检验的基本思想 628

二、假设检验的基本步骤 628

三、两类错误 628

四、正态总体未知参数的假设检验 629

五、假设检验与区间估计的联系 630

第2节 重要题型的解题方法和技巧 630

题型一 正态总体的均值和方差的假设检验 630

题型二 有关两类错误的命题 631

习题七 632

附录 课后习题答案详解 634

第一篇 高等数学 634

第一章 函数、极限和连续 634

第二章 导数与微分 638

第三章 不定积分 642

第四章 定积分及反常积分 649

第五章 微分中值定理 652

第六章 常微分方程 655

第七章 一元微积分的应用 661

第八章 无穷级数 666

第九章 矢量代数与空间解析几何 672

第十章 多元函数微分学 675

第十一章 重积分 679

第十二章 曲线、曲面积分及场论初步 688

第十三章 函数方程与不等式证明 690

第二篇 线性代数 694

第一章 行列式 694

第二章 矩阵 696

第三章 向量 704

第四章 线性方程组 709

第五章 特征值和特征向量 717

第三篇概率论与数理统计 729

第一章 随机事件和概率 729

第二章 随机变量及其分布 732

第三章 随机变量的数字特征 743

第四章 大数定律和中心极限定理 749

第五章 数理统计的基本概念 750

第六章 参数估计 753

第七章 假设检验 757