《科技人员用的高等数学方法》PDF下载

  • 购买积分:17 如何计算积分?
  • 作  者:CarlM.Bender,StevenA.Orszag著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2008
  • ISBN:9787506291910
  • 页数:593 页
图书介绍:本书是一部给工程人员和科技工作者介绍数学工具和方法的书。这本书的直接目的是讲述对问题的深层次的认识或者解决问题的能力,这些技巧对于解决那些在实践科研的学习过程中所遇到的疑难数学问题是很有用的。目次:(一)基础部分: 常微分方程;微分方程;(二) 局部分析:线性方程的近似解;非线性方程的近似解;微分方程的近似解;积分的渐近展开;(三)摄动法:摄动序列;级数和;(四) 全局分析:边界层理论;WKB理论;多尺度分析。

PART Ⅰ FUNDAMENTALS 3

1 Ordinary Differential Equations 3

1.1 Ordinary Differential Equations 3

1.2 Initial-Value and Boundary-Value Problems 5

1.3 Theory of Homogeneous Linear Equations 7

1.4 Solutions of Homogeneous Linear Equations 11

1.5 Inhomogeneous Linear Equations 14

1.6 First-Order Nonlinear Differential Equations 20

1.7 Higher-Order Nonlinear Differential Equations 24

1.8 Eigenvalue Problems 27

1.9 Differential Equations in the Complex Plane 29

Problems for CHAPTER1 30

2 Difference Equations 36

2.1 The Calculus of Differences 36

2.2 Elementary Difference Equations 37

2.3 Homogeneous Linear Difference Equations 40

2.4 Inhomogeneous Linear Difference Equations 49

2.5 Nonlinear Difference Equations 53

Problems for CHAPTER2 53

PART Ⅱ LOCAL ANALYSIS 61

3 Approximate Solution of Linear Differential Equations 61

3.1 Classification of Singular Points of Homogeneous Linear Equations 62

3.2 Local Behavior Near Ordinary Points of Homogeneous Linear Equations 66

3.3 Local Series Expansions About Regular Singular Points of Homogeneous Linear Equations 68

3.4 Local Behavior at Irregular Singular Points of Homogeneous Linear Equations 76

3.5 Irregular Singular Point at Infinity 88

3.6 Local Analysis of Inhomogeneous Linear Equations 103

3.7 Asymptotic Relations 107

3.8 Asymptotic Series 118

Problems for CHAPTER3 136

4 Approximate Solution of Nonlinear Differential Equations 146

4.1 Spontaneous Singularities 146

4.2 Approximate Solutions of First-Order Nonlinear Differential Equations 148

4.3 Approximate Solutions to Higher-Order Nonlinear Differential Equations 152

4.4 Nonlinear Autonomous Systems 171

4.5 Higher-Order Nonlinear Autonomous Systems 185

Problems for CHAPTER4 196

5 Approximate Solution of Difference Equations 205

5.1 Introductory Comments 205

5.2 Ordinary and Regular Singular Points of Linear Difference Equations 206

5.3 Local Behavior Near an Irregular Singular Point at Infinity:Determination of Controlling Factors 214

5.4 Asymptotic Behavior of n!as n→∞:The Stirling Series 218

5.5 Local Behavior Near an Irregular Singular Point at Infinity:Full Asymptotic Series 227

5.6 Local Behavior of Nonlinear Difference Equations 233

Problems for CHAPTER5 240

6 Asymptotic Expansion of Integrals 247

6.1 Introduction 247

6.2 Elementary Examples 249

6.3 Integration by Parts 252

6.4 Laplace’s Method and Watson’s Lemma 261

6.5 Method of Stationary Phase 276

6.6 Method of Steepest Descents 280

6.7 Asymptotic Evaluation of Sums 302

Problems for CHAPTER6 306

PART Ⅲ PERTURBATION METHODS 319

7 Perturbation Series 319

7.1 Perturbation Theory 319

7.2 Regular and Singular Perturbation Theory 324

7.3 Perturbation Methods for Linear Eigenvalue Problems 330

7.4 Asymptotic Matching 335

7.5 Mathematical Structure of Perturbative Eigenvalue Problems 350

Problems for CHAPTER7 361

8 Summation of Series 368

8.1 Improvement of Convergence 368

8.2 Summation of Divergent Series 379

8.3 Padé Summation 383

8.4 Continued Fractions and Padé Approximants 395

8.5 Convergence of Padé Approximants 400

8.6 Padé Sequences for Stieltjes Functions 405

Problems for CHAPTER8 410

PART Ⅳ GLOBAL ANALYSIS 417

9 Boundary Layer Theory 417

9.1 Introduction to Boundary-Layer Theory 419

9.2 Mathematical Structure of Boundary Layers:Inner,Outer,and Intermediate Limits 426

9.3 Higher-Order Boundary Layer Theory 431

9.4 Distinguished Limits and Boundary Layers of Thickness≠ε 435

9.5 Miscellaneous Examples of Linear Boundary-Layer Problems 446

9.6 Internal Boundary Layers 455

9.7 Nonlinear Boundary-Layer Problems 463

Problems for CHAPTER9 479

10 WKB Theory 484

10.1 The Exponential Approximation for Dissipative and Dispersive Phenomena 484

10.2 Conditions for Validity of the WKB Approximation 493

10.3 Patched Asymptotic Approximations:WKB Solution of Inhomogeneous Linear Equations 497

10.4 Matched Asymptotic Approximations:Solution of the One-Turning-Point Problem 504

10.5 Two-Turning-Point Problems:Eigenvalue Condition 519

10.6 Tunneling 524

10.7 Brief Discussion of Higher-Order WKB Approximations 534

Problems for CHAPTER10 539

11 Multiple-Scale Analysis 544

11.1 Resonance and Secular Behavior 544

11.2 Multiple-Scale Analysis 549

11.3 Examples of Multiple-Scale Analysis 551

11.4 The Mathieu Equation and Stability 560

Problems for CHAPTER11 566

Appendix—Useful Formulas 569

References 577

Index 581