1 Background 1
1.1 Heating and temperature 1
1.2 Some dilute gas relationships 4
1.3 The First Law of Thermodynamics 8
1.4 Heat capacity 11
1.5 An adiabatic process 13
1.6 The meaning of words 16
1.7 Essentials 18
Further reading 21
Problems 21
2 The Second Law of Thermodynamics2.1 Multiplicity 24
2.2 The Second Law of Thermodynamics 28
2.3 The power of the Second Law 29
2.4 Connecting multiplicity and energy transfer by heating 31
2.5 Some examples 35
2.6 Generalization 39
2.7 Entropy and disorder 44
2.8 Essentials 45
Further reading 46
Problems 47
3 Entropy and Efficiency 51
3.1 The most important thermodynamic cycle:the Carnot cycle 51
3.2 Maximum efficiency 55
3.3 A practical consequence 59
3.4 Rapid change 60
3.5 The simplified Otto cycle 62
3.6 More about reversibility 67
3.7 Essentials 69
Further reading 70
Problems 71
4 Entropy in Quantum Theory 75
4.1 The density of states 75
4.2 The quantum version of multiplicity 80
4.3 A general definition of temperature 80
4.4 Essentials 86
Problems 87
5 The Canonical Probability Distribution5.1 Probabilities 89
5.2 Probabilities when the temperature is fixed 91
5.3 An example:spin 1/2h paramagnetism 94
5.4 The partition function technique 96
5.5 The energy range δE 99
5.6 The ideal gas,treated semi-classically 101
5.7 Theoretical threads 109
5.8 Essentials 109
Further reading 111
Problems 112
6 Photons and Phonons 116
6.1 The big picture 116
6.2 Electromagnetic waves and photons 118
6.3 Radiative flux 123
6.4 Entropy and evolution(optional) 128
6.5 Sound waves and phonons 130
6.6 Essentials 139
Further reading 141
Problems 141
7 The Chemical Potential 148
7.1 Discovering the chemical potential 148
7.2 Minimum free energy 155
7.3 A lemma for computing μ 156
7.4 Adsorption 157
7.5 Essentials 160
Further reading 161
Problems 162
8 The Quantum Ideal Gas 166
8.1 Coping with many particles all at once 166
8.2 Occupation numbers 168
8.3 Estimating the occupation numbers 170
8.4 Limits:classical and semi-classical 173
8.5 The nearly classical ideal gas(optional) 175
8.6 Essentials 178
Further reading 179
Problems 180
9 Fermions and Bosons at Low Temperature9.1 Fermions at low temperature 182
9.2 Pauli paramagnetism(optional) 192
9.3 White dwarf stars(optional) 194
9.4 Bose-Einstein condensation:theory 199
9.5 Bose-Einstein condensation:experiments 205
9.6 A graphical comparison 209
9.7 Essentials 212
Further reading 214
Problems 215
10 The Free Energies 222
10.1 Generalities about an open system 222
10.2 Helmholtz free energy 225
10.3 More on understanding the chemical potential 226
10.4 Gibbs free energy 230
10.5 The minimum property 233
10.6 Why the phrase"free energy"? 234
10.7 Miscellany 236
10.8 Essentials 238
Further reading 239
Problems 240
11 Chemical Equilibrium 244
11.1 The kinetic view 244
11.2 A consequence of minimum free energy 246
11.3 The diatomic molecule 250
11.4 Thermal ionization 257
11.5 Another facet of chemical equilibrium 260
11.6 Creation and annihilation 262
11.7 Essentials 264
Further reading 266
Problems 266
12 Phase Equilibrium 270
12.1 Phase diagram 270
12.2 Latent heat 273
12.3 Conditions for coexistence 276
12.4 Gibbs-Duhem relation 279
12.5 Clausius-Clapeyron equation 280
12.6 Cooling by adiabatic compression(optional) 282
12.7 Gibbs'phase rule(optional) 290
12.8 Isotherms 291
12.9 Van der Waals equation of state 293
12.10 Essentials 300
Further reading 301
Problems 301
13 The Classical Limit 306
13.1 Classical phase space 306
13.2 The Maxwellian gas 309
13.3 The equipartition theorem 314
13.4 Heat capacity of diatomic molecules 318
13.5 Essentials 320
Further reading 322
Problems 322
14 Approaching Zero 327
14.1 Entropy and probability 327
14.2 Entropy in paramagnetism 329
14.3 Cooling by adiabatic demagnetization 331
14.4 The Third Law of Thermodynamics 337
14.5 Some other consequences of the Third Law 341
14.6 Negative absolute temperatures 343
14.7 Temperature recapitulated 347
14.8 Why heating increases the entropy.Or does it? 349
14.9 Essentials 351
Further reading 352
Problems 353
15 Transport Processes 356
15.1 Mean free path 356
15.2 Random walk 360
15.3 Momentum transport:viscosity 362
15.4 Pipe flow 366
15.5 Energy transport:thermal conduction 367
15.6 Time-dependent thermal conduction 369
15.7 Thermal evolution:an example 372
15.8 Refinements 375
15.9 Essentials 377
Further reading 378
Problems 378
16 Critical Phenomena 382
16.1 Experiments 382
16.2 Critical exponents 388
16.3 Ising model 389
16.4 Mearn field theory 392
16.5 Renormalization group 397
16.6 First-order versus continuous 407
16.7 Universality 409
16.8 Essentials 414
Further reading 415
Problems 415
Epilogue 419
Appendix A Physical and Mathematical Data 420
Appendix B Examples of Estimating Occupation Numbers 426
Appendix C The Framework of Probability Theory 428
Appendix D Qualitative Perspectives on the van der Waals Equation 435
Index 438