《热物理学 英文版》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:(美)贝尔雷著
  • 出 版 社:世界图书北京出版公司
  • 出版年份:2010
  • ISBN:9787510024023
  • 页数:442 页
图书介绍:本书是一部介绍热物理学的入门教程。作者是一名很有经验的教师,书中全面讲述热动力学,统计力学和运动力学三个方面。

1 Background 1

1.1 Heating and temperature 1

1.2 Some dilute gas relationships 4

1.3 The First Law of Thermodynamics 8

1.4 Heat capacity 11

1.5 An adiabatic process 13

1.6 The meaning of words 16

1.7 Essentials 18

Further reading 21

Problems 21

2 The Second Law of Thermodynamics2.1 Multiplicity 24

2.2 The Second Law of Thermodynamics 28

2.3 The power of the Second Law 29

2.4 Connecting multiplicity and energy transfer by heating 31

2.5 Some examples 35

2.6 Generalization 39

2.7 Entropy and disorder 44

2.8 Essentials 45

Further reading 46

Problems 47

3 Entropy and Efficiency 51

3.1 The most important thermodynamic cycle:the Carnot cycle 51

3.2 Maximum efficiency 55

3.3 A practical consequence 59

3.4 Rapid change 60

3.5 The simplified Otto cycle 62

3.6 More about reversibility 67

3.7 Essentials 69

Further reading 70

Problems 71

4 Entropy in Quantum Theory 75

4.1 The density of states 75

4.2 The quantum version of multiplicity 80

4.3 A general definition of temperature 80

4.4 Essentials 86

Problems 87

5 The Canonical Probability Distribution5.1 Probabilities 89

5.2 Probabilities when the temperature is fixed 91

5.3 An example:spin 1/2h paramagnetism 94

5.4 The partition function technique 96

5.5 The energy range δE 99

5.6 The ideal gas,treated semi-classically 101

5.7 Theoretical threads 109

5.8 Essentials 109

Further reading 111

Problems 112

6 Photons and Phonons 116

6.1 The big picture 116

6.2 Electromagnetic waves and photons 118

6.3 Radiative flux 123

6.4 Entropy and evolution(optional) 128

6.5 Sound waves and phonons 130

6.6 Essentials 139

Further reading 141

Problems 141

7 The Chemical Potential 148

7.1 Discovering the chemical potential 148

7.2 Minimum free energy 155

7.3 A lemma for computing μ 156

7.4 Adsorption 157

7.5 Essentials 160

Further reading 161

Problems 162

8 The Quantum Ideal Gas 166

8.1 Coping with many particles all at once 166

8.2 Occupation numbers 168

8.3 Estimating the occupation numbers 170

8.4 Limits:classical and semi-classical 173

8.5 The nearly classical ideal gas(optional) 175

8.6 Essentials 178

Further reading 179

Problems 180

9 Fermions and Bosons at Low Temperature9.1 Fermions at low temperature 182

9.2 Pauli paramagnetism(optional) 192

9.3 White dwarf stars(optional) 194

9.4 Bose-Einstein condensation:theory 199

9.5 Bose-Einstein condensation:experiments 205

9.6 A graphical comparison 209

9.7 Essentials 212

Further reading 214

Problems 215

10 The Free Energies 222

10.1 Generalities about an open system 222

10.2 Helmholtz free energy 225

10.3 More on understanding the chemical potential 226

10.4 Gibbs free energy 230

10.5 The minimum property 233

10.6 Why the phrase"free energy"? 234

10.7 Miscellany 236

10.8 Essentials 238

Further reading 239

Problems 240

11 Chemical Equilibrium 244

11.1 The kinetic view 244

11.2 A consequence of minimum free energy 246

11.3 The diatomic molecule 250

11.4 Thermal ionization 257

11.5 Another facet of chemical equilibrium 260

11.6 Creation and annihilation 262

11.7 Essentials 264

Further reading 266

Problems 266

12 Phase Equilibrium 270

12.1 Phase diagram 270

12.2 Latent heat 273

12.3 Conditions for coexistence 276

12.4 Gibbs-Duhem relation 279

12.5 Clausius-Clapeyron equation 280

12.6 Cooling by adiabatic compression(optional) 282

12.7 Gibbs'phase rule(optional) 290

12.8 Isotherms 291

12.9 Van der Waals equation of state 293

12.10 Essentials 300

Further reading 301

Problems 301

13 The Classical Limit 306

13.1 Classical phase space 306

13.2 The Maxwellian gas 309

13.3 The equipartition theorem 314

13.4 Heat capacity of diatomic molecules 318

13.5 Essentials 320

Further reading 322

Problems 322

14 Approaching Zero 327

14.1 Entropy and probability 327

14.2 Entropy in paramagnetism 329

14.3 Cooling by adiabatic demagnetization 331

14.4 The Third Law of Thermodynamics 337

14.5 Some other consequences of the Third Law 341

14.6 Negative absolute temperatures 343

14.7 Temperature recapitulated 347

14.8 Why heating increases the entropy.Or does it? 349

14.9 Essentials 351

Further reading 352

Problems 353

15 Transport Processes 356

15.1 Mean free path 356

15.2 Random walk 360

15.3 Momentum transport:viscosity 362

15.4 Pipe flow 366

15.5 Energy transport:thermal conduction 367

15.6 Time-dependent thermal conduction 369

15.7 Thermal evolution:an example 372

15.8 Refinements 375

15.9 Essentials 377

Further reading 378

Problems 378

16 Critical Phenomena 382

16.1 Experiments 382

16.2 Critical exponents 388

16.3 Ising model 389

16.4 Mearn field theory 392

16.5 Renormalization group 397

16.6 First-order versus continuous 407

16.7 Universality 409

16.8 Essentials 414

Further reading 415

Problems 415

Epilogue 419

Appendix A Physical and Mathematical Data 420

Appendix B Examples of Estimating Occupation Numbers 426

Appendix C The Framework of Probability Theory 428

Appendix D Qualitative Perspectives on the van der Waals Equation 435

Index 438