第1章 随机事件与概率 1
1.1 教学基本要求 1
1.2 知识要点 1
1.2.1 随机事件有关概念 1
1.2.2 事件间的关系与运算 2
1.2.3 概率的统计定义 3
1.2.4 概率的古典定义 3
1.2.5 概率的几何定义 3
1.2.6 概率的公理化定义及性质 4
1.3 例题解析 5
1.4 同步练习 15
答案与提示 17
第2章 条件概率与独立性 23
2.1 教学基本要求 23
2.2 知识要点 23
2.2.1 条件概率 23
2.2.2 概率的乘法公式 24
2.2.3 全概率公式与贝叶斯公式 24
2.2.4 事件的独立性 25
2.2.5 随机试验的独立性 25
2.3 例题解析 26
2.4 同步练习 34
答案与提示 37
第3章 一维随机变量及其分布 43
3.1 教学基本要求 43
3.2 知识要点 43
3.2.1 随机变量及其分布函数 43
3.2.2 离散型随机变量 44
3.2.3 连续型随机变量 46
3.2.4 一维随机变量函数的分布 48
3.3 例题解析 49
3.4 同步练习 70
答案与提示 73
第4章 多维随机变量及其分布 83
4.1 教学基本要求 83
4.2 知识要点 83
4.2.1 多维随机变量及其联合分布 83
4.2.2 二维离散型随机变量 84
4.2.3 二维连续型随机变量 85
4.2.4 边缘分布 85
4.2.5 常见的二维随机变量及其分布 87
4.2.6 条件分布 87
4.2.7 随机变量的独立性 88
4.2.8 多维随机变量的函数分布 89
4.3 例题解析 90
4.4 同步练习 110
答案与提示 113
第5章 随机变量的数字特征 123
5.1 教学基本要求 123
5.2 知识要点 123
5.2.1 数学期望 123
5.2.2 方差与标准差 125
5.2.3 常见一维随机变量的数字特征 125
5.2.4 协方差与相关系数 126
5.2.5 高阶矩 127
5.2.6 位置特征 127
5.3 例题解析 128
5.4 同步练习 142
答案与提示 144
第6章 大数定律和中心极限定理 152
6.1 教学基本要求 152
6.2 知识要点 152
6.2.1 切比雪夫不等式 152
6.2.2 大数定律 153
6.2.3 中心极限定理 154
6.3 例题解析 155
6.4 同步练习 162
答案与提示 164
第7章 数理统计的一些基本概念 172
7.1 教学基本要求 172
7.2 知识要点 172
7.2.1 总体、个体和样本 172
7.2.2 经验分布函数与直方图 173
7.2.3 统计量和样本矩 174
7.2.4 抽样分布 174
7.3 例题解析 177
7.4 同步练习 185
答案与提示 189
第8章 参数估计 196
8.1 教学基本要求 196
8.2 知识要点 196
8.2.1 点估计 196
8.2.2 区间估计 199
8.3 例题解析 203
8.4 同步练习 216
答案与提示 220
第9章 假设检验 232
9.1 教学基本要求 232
9.2 知识要点 232
9.2.1 基本概念 232
9.2.2 正态总体参数的检验 233
9.2.3 总体分布的x2检验 238
9.2.4 联列表的独立性检验 239
9.3 例题解析 239
9.4 同步练习 250
答案与提示 254
第10章 方差分析与回归分析 270
10.1 教学基本要求 270
10.2 知识要点 270
10.2.1 基本概念 270
10.2.2 单因素方差分析 271
10.2.3 回归分析 273
10.3 例题解析 275
10.4 同步练习 281
答案与提示 282
综合测试题 288
综合测试题一 288
综合测试题二 290
综合测试题三 292
综合测试题四 293
综合测试题五 296
综合测试题六 298
综合测试题七 299
综合测试题八 301
综合测试题答案与提示 304
综合测试题一答案与提示 304
综合测试题二答案与提示 308
综合测试题三答案与提示 311
综合测试题四答案与提示 313
综合测试题五答案与提示 317
综合测试题六答案与提示 319
综合测试题七答案与提示 320
综合测试题八答案与提示 323
参考文献 325