1 Fibers for Ceramic Matrix Composites&Bernd ClauB 1
1.1 Introduction 1
1.2 Fibers as Reinforcement in Ceramics 1
1.3 Structure and Properties of Fibers 2
1.3.1 Fiber Structure 2
1.3.2 Structure Formation 3
1.3.3 Structure Parameters and Fiber Properties 4
1.4 Inorganic Fibers 7
1.4.1 Production Processes 7
1.4.1.1 Indirect Fiber Production 7
1.4.1.2 Direct Fiber Production 7
1.4.2 Properties of Commercial Products 9
1.4.2.1 Comparison of Oxide and Non-oxide Ceramic Fibers 9
1.4.2.2 Oxide Ceramic Filament Fibers 10
1.4.2.3 Non-oxide Ceramic Filament Fibers 11
1.5 Carbon Fibers 12
1.5.1 Production Processes 15
1.5.1.1 Carbon Fibers from PAN Precursors 15
1.5.1.2 Carbon Fibers from Pitch Precursors 17
1.5.1.3 Carbon Fibers from Regenerated Cellulose 17
1.5.2 Commercial Products 18
Acknowledgments 19
2 Textile Reinforcement Structures&Thomas Gries,Jan Stuve,and Tim Grundmann 21
2.1 Introduction 21
2.1.1 Definition for the Differentiation of Two-Dimensional and Three-Dimensional Textile Structures 23
2.1.2 Yarn Structures 23
2.2 Two-Dimensional Textiles 24
2.2.1 Nonwovens 24
2.2.2 Woven Fabrics 25
2.2.3 Braids 27
2.2.4 Knitted Fabrics 28
2.2.5 Non-crimp Fabrics 29
2.3 Three-Dimensional Textiles 30
2.3.1 Three-Dimensional Woven Structures 30
2.3.2 Braids 32
2.3.2.1 Overbraided Structures 32
2.3.2.2 Three-Dimensional Braided Structures 34
2.3.3 Three-Dimensional Knits 37
2.3.3.1 Multilayer Weft-Knits 37
2.3.3.2 Spacer Warp-Knits 37
2.4 Preforming 38
2.4.1 One-Step/Multi-Step Preforming 38
2.4.2 Cutting 39
2.4.3 Handling and Draping 39
2.4.4 Joining Technologies 40
2.5 Textile Testing 41
2.5.1 Tensile Strength 41
2.5.2 Bending Stiffness 41
2.5.3 Filament Damage 42
2.5.4 Drapability 42
2.5.5 Quality Management 42
2.6 Conclusions 43
2.6.1 Processability of Brittle Fibers 43
2.6.2 Infiltration of the Textile Structure 43
2.6.3 Mechanical Properties of the Final CMC Structure 44
2.6.4 Productivity and Production Process Complexity 44
2.7 Summary and Outlook 44
Acknowledgments 45
3 Interfaces and Interphases&Jacques Lamon 49
3.1 Introduction 49
3.2 Role of Interfacial Domain in CMCs 50
3.3 Mechanism of Deviation of Transverse Cracks 52
3.4 Phenomena Associated to Deviation of Matrix Cracks 53
3.5 Tailoring Fiber/Matrix Interfaces.Influence on Mechanical Properties and Behavior 55
3.6 Various Concepts of Weak Interfaces/ Interphases 59
3.7 Interfacial Properties 61
3.8 Interface Control 64
3.9 Conclusions 66
4 Carbon/Carbons and Their Industrial Applications&Roland WeiB 69
4.1 Introduction 69
4.2 Manufacturing of C/Cs 69
4.2.1 Carbon Fiber Reinforcements 71
4.2.2 Matrix Systems 73
4.2.2.1 Thermosetting Resins as Matrix Precursors 73
4.2.2.2 Thermoplastics as Matrix Precursors 74
4.2.2.3 Gas Phase Derived Carbon Matrices 75
4.2.3 Redensification/Recarbonization Cycles 79
4.2.4 Final Heat Treatment(HTT) 80
4.3 Industrial Applications of C/Cs 82
4.3.1 Oxidation Protection of C/Cs 83
4.3.1.1 Bulk Protection Systems for C/Cs 83
4.3.1.2 Outer Multilayer Coatings 88
4.3.1.3 Outer Glass Sealing Layers 90
4.3.2 Industrial Applications of C/Cs 92
4.3.2.1 C/Cs for High Temperature Furnaces 97
4.3.2.2 Application for Thermal Treatments of Metals 102
4.3.2.3 Application of C/C in the Solar Energy Market 105
5 Melt Infiltration Process&Bernhard Heidenreich 113
5.1 Introduction 113
5.2 Processing 114
5.2.1 Build-up of Fiber Protection and Fiber/Matrix Interface 115
5.2.2 Manufacture of Fiber Reinforced Green Bodies 117
5.2.3 Build-up of a Porous,Fiber Reinforced Preform 118
5.2.4 Si Infiltration and Build-up of SiC Matrix 119
5.3 Properties 121
5.3.1 Material Composition 127
5.3.2 Mechanical Properties 128
5.3.3 CTE and Thermal Conductivity 130
5.3.4 Frictional Properties 131
5.4 Applications 131
5.4.1 Space Applications 131
5.4.2 Short-term Aeronautics 133
5.4.3 Long-term Aeronautics and Power Generation 133
5.4.4 Friction Systems 134
5.4.5 Low-Expansion Structures 135
5.4.6 Further Applications 136
5.5 Summary 137
6 Chemical Vapor Infiltration Processes for Ceramic Matrix Composites:Manufacturing,Properties,Applications&Martin Leuchs 141
6.1 Introduction 141
6.2 CVI Manufacturing Process for CMCs 143
6.2.1 Isothermal-Isobaric Infiltration 144
6.2.2 Gradient Infiltration 145
6.2.3 Discussion of the Two CVI-processes 146
6.3 Properties of CVI Derived CMCs 146
6.3.1 General Remarks 146
6.3.2 Mechanical Properties 148
6.3.2.1 Fracture Mechanism and Toughness 148
6.3.2.2 Stress-Strain Behavior 149
6.3.2.3 Dynamic Loads 151
6.3.2.4 High Temperature Properties and Corrosion 151
6.3.2.5 Thermal and Electrical Properties 153
6.4 Applications and Main Developments 153
6.4.1 Hot Structures in Space 153
6.4.2 Gas Turbines 155
6.4.3 Material for Fusion Reactors 156
6.4.4 Components for Journal Bearings 156
6.5 Outlook 161
7 The PIP-process:Precursor Properties and Applications&Gunter Motz,Stephan Schmidt,and Steffen Beyer 165
7.1 Si-based Precursors 165
7.1.1 Introduction 165
7.1.2 Precursor Systems and Properties 166
7.1.3 Cross-Linking Behavior of Precursors 167
7.1.4 Pyrolysis Behavior of Precursors 169
7.1.5 Commercial Available Non-oxide Precursors 171
7.2 The Polymer Impregnation and Pyrolysis Process(PIP) 171
7.2.1 Introduction 171
7.2.2 Manufacturing Technology 173
7.2.2.1 Preform Manufacturing 173
7.2.2.2 Manufacturing of CMC 175
7.3 Applications of the PIP-process 180
7.3.1 Launcher Propulsion 180
7.3.2 Satellite Propulsion 182
7.4 Summary 184
8 Oxide/Oxide Composites with Fiber Coatings&George Jefferson,Kristin A.Keller,Randall S.Hay,and Ronald J.Kerans 187
8.1 Introduction 187
8.2 Applications 189
8.3 CMC Fiber-Matrix Interfaces 189
8.3.1 Interface Control 190
8.3.2 Fiber Coating Methods 191
8.3.3 CMC Processing 194
8.3.4 Fiber-Matrix Interfaces 195
8.3.4.1 Weak Oxides 195
8.3.4.2 Porous Coatings and Fugitive Coatings 197
8.3.4.3 Other Coatings 198
8.4 Summary and Future Work 198
9 All-Oxide Ceramic Matrix Composites with Porous Matrices&Martin Schmucker and Peter Mechnich 205
9.1 Introduction 205
9.1.1 Oxide Ceramic Fibers 206
9.1.2 “Classical” CMC Concepts 207
9.2 Porous Oxide/Oxide CMCs without Fiber/Matrix Interphase 208
9.2.1 Materials and CMC Manufacturing 210
9.2.2 Mechanical Properties 214
9.2.3 Thermal Stability 218
9.2.4 Other Properties 220
9.3 Oxide/Oxide CMCs with Protective Coatings 223
9.4 Applications of Porous Oxide/Oxide CMCs 226
10 Microstructural Modeling and Thermomechanical Properties&Dietmar Koch 231
10.1 Introduction 231
10.2 General Concepts of CMC Design,Resulting Properties,and Modeling 232
10.2.1 Weak Interface Composites WIC 232
10.2.2 Weak Matrix Composites WMC 237
10.2.3 Assessment of Properties of WIC and WMC 238
10.2.4 Modeling of the Mechanical Behavior of WMC 238
10.2.5 Concluding Remarks 243
10.3 Mechanical Properties of CMC 244
10.3.1 General Mechanical Behavior 244
10.3.2 High Temperature Properties 246
10.3.3 Fatigue 251
10.3.4 Concluding Remarks 255
Acknowledgment 256
11 Non-destructive Testing Techniques for CMC Materials&Jan Marcel Hausherr and Walter Krenkel 261
11.1 Introduction 261
11.2 Optical and Haptic Inspection Analysis 261
11.3 Ultrasonic Analysis 262
11.3.1 Physical Principle and Technical Implementation 263
11.3.2 Transmission Analysis 264
11.3.3 Echo-Pulse Analysis 265
11.3.4 Methods and Technical Implementation 266
11.3.5 Ultrasonic Analysis of CMC 267
11.4 Thermography 268
11.4.1 Thermal Imaging(Infrared Photography) 269
11.4.2 Lockin Thermography 271
11.4.3 Ultrasonic Induced Thermography 272
11.4.4 Damage Detection Using Thermography 272
11.5 Radiography(X-Ray Analysis) 273
11.5.1 Detection of X-Rays 273
11.5.1.1 X-Ray Film(Photographic Plates) 274
11.5.1.2 X-Ray Image Intensifier 274
11.5.1.3 Solid State Arrays 275
11.5.1.4 Gas Ionization Detectors(Geiger Counter) 275
11.5.2 Application of Radiography for C/SiC Composites 275
11.5.3 Limitations and Disadvantages of Radiography 277
11.6 X-Ray Computed Tomography 277
11.6.1 Functional Principle of CT 277
11.6.2 Computed Tomography for Defect Detection 279
11.6.3 Micro-structural CT-Analysis 280
11.6.4 Process Accompanying CT-Analysis 282
11.7 Conclusions 283
12 Machining Aspects for the Drilling of C/C-SiC Materials&Klaus Weinert and Tim Jansen 287
12.1 Introduction 287
12.2 Analysis of Machining Task 288
12.3 Determination of Optimization Potentials 290
12.3.1 Tool 290
12.3.2 Parameters 294
12.3.3 Basic Conditions 294
12.4 Process Strategies 295
12.5 Conclusions 300
13 Advanced Joining and Integration Technologies for Ceramic Matrix Composite Systems&Mrityunjay Singh and Rajiv Asthana 303
13.1 Introduction 303
13.2 Need for Joining and Integration Technologies 304
13.3 Joint Design,Analysis,and Testing Issue 304
13.3.1 Wettability 305
13.3.2 Surface Roughness 306
13.3.3 Joint Design and Stress State 306
13.3.4 Residual Stress,Joint Strength,and Joint Stability 307
13.4 Joining and Integration of CMC-Metal Systems 309
13.5 Joining and Integration of CMC-CMC Systems 314
13.6 Application in Subcomponents 318
13.7 Repair of Composite Systems 321
13.8 Concluding Remarks and Future Directions 322
Acknowledgments 323
14 CMC Materials for Space and Aeronautical Applications&Francois Christin 327
14.1 Introduction 327
14.2 Carbon/Carbon Composites 328
14.2.1 Manufacturing of Carbon/Carbon Composites 328
14.2.1.1 n-Dimensional Reinforcement 328
14.2.1.2 Three-Dimensional Reinforcement Preforms 329
14.2.1.3 Densification 333
14.2.2 Carbon/Carbon Composites Applications 335
14.2.2.1 Solid Rocket Motors(SRM)Nozzles 335
14.2.2.2 Liquid Rocket Engines(LRE) 337
14.2.2.3 Friction Applications 338
14.3 Ceramic Composites 338
14.3.1 SiC-SiC and Carbon-SiC Composites Manufacture 339
14.3.1.1 Elaboration 340
14.3.2 SiC-SiC and Carbon-SiC Composites Applications 340
14.3.2.1 Aeronautical and Space Applications 340
14.3.2.2 Liquid Rocket Engines Applications 341
14.3.3 A Breakthrough with a New Concept:The Self-Healing Matrix 343
14.3.3.1 Manufacturing of Ceramic Composites 343
14.3.3.2 The Self-Healing Matrix 344
14.3.3.3 Characterization 344
14.3.4 Representative Applications of These New Materials 347
14.3.4.1 Military Aeronautical Applications 347
14.3.4.2 Commercial Aeronautical Applications 349
15 CMC for Nuclear Applications&Akira Kohyama 353
15.1 Introduction 353
15.2 Gas Reactor Technology and Ceramic Materials 354
15.3 Ceramic Fiber Reinforced Ceramic Matrix Composites(CFRC,CMC) 356
15.4 Innovative SiC/SiC by NITE Process 358
15.5 Characteristic Features of SiC/SiC Composites by NITE Process 359
15.6 Effects of Radiation Damage 362
15.6.1 Ion-Irradiation Technology for SiC Materials 363
15.6.2 Micro-Structural Evolution and Swelling 364
15.6.3 Thermal Conductivity 366
15.6.4 Mechanical Property Changes 369
15.7 Mechanical Property Evaluation Methods 371
15.7.1 Impulse Excitation Method for Young’s Modulus Determination 372
15.7.2 Bulk Strength Testing Methods for Ceramics 373
15.7.3 Test Methods for Composites 374
15.7.4 Development of Materials Database 378
15.8 New GFR Concepts Utilizing SiC/SiC Composite Materials 379
15.9 Concluding Remarks 381
16 CMCs for Friction Applications&Walter Krenkel and Ralph Renz 385
16.1 Introduction 385
16.2 C/SiC Pads for Advanced Friction Systems 385
16.2.1 Brake Pads for Emergency Brake Systems 388
16.2.2 C/SiC Brake Pads for High-Performance Elevators 388
16.3 Ceramic Brake Disks 391
16.3.1 Material Properties 392
16.3.2 Manufacturing 394
16.3.3 Braking Mechanism 396
16.3.4 Design Aspects 398
16.3.5 Testing 401
16.4 Ceramic Clutches 403
Index 409