《Fundamentals of Communications Systems》PDF下载

  • 购买积分:18 如何计算积分?
  • 作  者:Michael P.Fitz
  • 出 版 社:The McGraw-Hill Companies
  • 出版年份:2007
  • ISBN:
  • 页数:634 页
图书介绍:

Chapter 1 Introduction 1

1.1 Historical Perspectives on Communication Theory 1

1.2 Goals for This Text 3

1.3 Modern Communication System Engineering 4

1.4 Technology’s Impact on This Text 6

1.5 Book Overview 7

1.5.1 Mathematical Foundations 7

1.5.2 Analog Communication 8

1.5.3 Noise in Communication Systems 9

1.5.4 Fundamentals of Digital Communication 10

1.6 Homework Problems 10

PART 1 MATHEMATICAL FOUNDATIONS 13

Chapter 2 Signals and Systems Review 15

2.1 Signal Classification 15

2.1.1 Energy versus Power Signals 15

2.1.2 Periodic versus Aperiodic 18

2.1.3 Real versus Complex Signals 19

2.1.4 Continuous Time Signals versus Discrete Time Signals 20

2.2 Frequency Domain Characterization of Signals 20

2.2.1 Fourier Series 20

2.2.2 Fourier Transform 23

2.2.3 Bandwidth of Signals 28

2.2.4 Fourier Transform Representation of Periodic Signals 30

2.2.5 Laplace Transforms 32

2.3 Linear Time-Invariant Systems 32

2.4 Utilizing Matlab 37

2.4.1 Sampling 37

2.4.2 Integration 38

2.4.3 Commonly Used Functions 38

2.5 Homework Problems 39

2.6 Example Solutions 47

2.7 Miniprojects 50

2.7.1 Project 1 50

2.7.2 Project 2 51

Chapter 3 Review of Probability and Random Variables 53

3.1 Axiomatic Definitions of Probability 53

3.2 Random Variables 58

3.2.1 Cumulative Distribution Function 58

3.2.2 Probability Density Function 60

3.2.3 Moments and Statistical Averages 61

3.2.4 The Gaussian Random Variable 62

3.2.5 A Transformation of a Random Variable 64

3.3 Multiple Random Variables 66

3.3.1 Joint Density and Distribution Functions 66

3.3.2 Joint Moments and Statistical Averages 68

3.3.3 Two Gaussian Random Variables 68

3.3.4 Transformations of Random Variables 71

3.3.5 Central Limit Theorem 73

3.3.6 Multiple Dimensional Gaussian Random Variables 74

3.4 Homework Problems 75

3.5 Example Solutions 85

3.6 Miniprojects 88

3.6.1 Project 1 88

Chapter 4 Complex Baseband Representation of Bandpass Signals 91

4.1 Introduction 91

4.2 Baseband Representation of Bandpass Signals 92

4.3 Visualization of Complex Envelopes 96

4.4 Spectral Characteristics of the Complex Envelope 99

4.4.1 Basics 99

4.4.2 Bandwidth of Bandpass Signals 103

4.5 Power of Carrier Modulated Signals 104

4.6 Linear Systems and Bandpass Signals 104

4.7 Conclusions 108

4.8 Homework Problems 108

4.9 Example Solutions 120

4.10 Miniprojects 123

4.10.1 Project 1 123

4.10.2 Project 2 123

PART 2 ANALOG COMMUNICATION 125

Chapter 5 Analog Communications Basics 127

5.1 Message Signal Characterization 127

5.2 Analog Transmission 131

5.2.1 Analog Modulation 132

5.2.2 Analog Demodulation 132

5.3 Performance Metrics for Analog Communication 134

5.4 Preview of Pedagogy 137

5.5 Homework Problems 138

5.6 Example Solutions 141

Chapter 6 Amplitude Modulation 145

6.1 Linear Modulation 145

6.1.1 Modulator and Demodulator 149

6.1.2 Coherent Demodulation 150

6.1.3 DSB-AM Conclusions 152

6.2 Affine Modulation 152

6.2.1 Modulator and Demodulator 156

6.2.2 LC-AM Conclusions 160

6.3 Quadrature Modulations 160

6.3.1 VSB Filter Design 161

6.3.2 Single Sideband AM 163

6.3.3 Modulator and Demodulator 166

6.3.4 Transmitted Reference Based Demodulation 167

6.3.5 Quadrature Modulation Conclusions 171

6.4 Homework Problems 171

6.5 Example Solutions 186

6.6 Miniprojects 188

6.6.1 Project 1 189

6.6.2 Project 2 189

6.6.3 Project 3 190

Chapter 7 Analog Angle Modulation 191

7.1 Angle Modulation 191

7.1.1 Angle Modulators 196

7.2 Spectral Characteristics 197

7.2.1 A Sinusoidal Message Signal 197

7.2.2 General Results 204

7.3 Demodulation of Angle Modulations 209

7.4 Comparison of Analog Modulation Techniques 214

7.5 Homework Problems 215

7.6 Example Solutions 227

7.7 Miniprojects 229

7.7.1 Project 1 229

7.7.2 Project 2 230

Chapter 8 More Topics in Analog Communications 231

8.1 Phase-Locked Loops 231

8.1.1 General Concepts 231

8.1.2 PLL Linear Model 234

8.2 PLL-Based Angle Demodulation 234

8.2.1 General Concepts 234

8.2.2 PLL Linear Model 236

8.3 Multiplexing Analog Signals 238

8.3.1 Quadrature Carrier Multiplexing 239

8.3.2 Frequency Division Multiplexing 240

8.4 Conclusions 243

8.5 Homework Problems 243

8.6 Example Solutions 249

8.7 Miniprojects 250

8.7.1 Project 1 250

PART 3 NOISE IN COMMUNICATIONS SYSTEMS 251

Chapter 9 Random Processes 253

9.1 Basic Definitions 254

9.2 Gaussian Random Processes 257

9.3 Stationary Random Processes 261

9.3.1 Basics 262

9.3.2 Gaussian Processes 263

9.3.3 Frequency Domain Representation 267

9.4 Thermal Noise 271

9.5 Linear Systems and Random Processes 275

9.6 The Solution of the Canonical Problem 279

9.7 Homework Problems 282

9.8 Example Solutions 294

9.9 Miniprojects 296

9.9.1 Project 1 296

9.9.2 Project 2 296

Chapter 10 Noise in Bandpass Communication Systems 299

10.1 Bandpass Random Processes 302

10.2 Characteristics of the Complex Envelope 304

10.2.1 Three Important Results 304

10.2.2 Important Corollaries 307

10.3 Spectral Characteristics 310

10.4 The Solution of the Canonical Bandpass Problem 313

10.5 Complex Additive White Gaussian Noise 316

10.6 Conclusion 317

10.7 Homework Problems 317

10.8 Example Solutions 325

10.9 Miniprojects 327

10.9.1 Project 328

Chapter 11 Fidelity in Analog Demodulation 329

11.1 Unmodulated Signals 329

11.2 Bandpass Demodulation 332

11.2.1 Coherent Demodulation 333

11.3 Coherent Amplitude Demodulation 334

11.3.1 Coherent Demodulation 334

11.4 Noncoherent Amplitude Demodulation 337

11.5 Angle Demodulations 340

11.5.1 Phase Modulation 340

11.5.2 Frequency Modulation 343

11.6 Improving Fidelity with Pre-Emphasis 345

11.7 Final Comparisons 347

11.8 Homework Problems 348

11.9 Example Solutions 354

11.10 Miniprojects 357

11.10.1 Project 1 357

11.10.2 Project 2 357

PART 4 FUNDAMENTALS OF DIGITAL COMMUNICATION 359

Chapter 12 Digital Communication Basics 361

12.1 Digital Transmission 362

12.1.1 Digital Modulation 362

12.1.2 Digital Demodulation 363

12.2 Performance Metrics for Digital Communication 364

12.2.1 Fidelity 364

12.2.2 Complexity 365

12.2.3 Bandwidth Efficiency 366

12.2.4 Other Important Characteristics 367

12.3 Some Limits on Performance of Digital Communication Systems 368

12.4 Conclusion 370

12.5 Homework Problems 371

12.6 Example Solutions 374

12.7 Miniprojects 374

12.7.1 Project 1 375

Chapter 13 Optimal Single Bit Demodulation Structures 377

13.1 Introduction 377

13.1.1 Statistical Hypothesis Testing 379

13.1.2 Statistical Hypothesis Testing in Digital Communications 381

13.1.3 Digital Communications Design Problem 382

13.2 Minimum Probability of Error Bit Demodulation 383

13.2.1 Characterizing the Filter Output 385

13.2.2 Uniform A Priori Probability 387

13.3 Analysis of Demodulation Fidelity 390

13.3.1 Erf Function 391

13.3.2 Uniform A Priori Probability 392

13.4 Filter Design 394

13.4.1 Maximizing Effective SNR 394

13.4.2 The Matched Filter 396

13.4.3 MLBD with the Matched Filter 397

13.4.4 More Insights on the Matched Filter 399

13.5 Signal Design 401

13.6 Spectral Characteristics 404

13.7 Examples 406

13.7.1 Frequency Shift Keying 406

13.7.2 Phase Shift Keying 412

13.7.3 Discussion 415

13.8 Homework Problems 416

13.9 Example Solutions 426

13.10 Miniprojects 431

13.10.1 Project 1 431

13.10.2 Project 2 433

Chapter 14 Transmitting More Than One Bit 435

14.1 A Reformulation for 1 Bit Transmission 435

14.2 Optimum Demodulation 437

14.2.1 Optimum Word Demodulation Receivers 438

14.2.2 Analysis of Demodulation Fidelity 441

14.2.3 Union Bound 444

14.2.4 Signal Design 450

14.3 Examples 451

14.3.1 M-ary FSK 451

14.3.2 M-ary PSK 455

14.3.3 Discussion 460

14.4 Homework Problems 461

14.5 Example Solutions 471

14.6 Miniprojects 474

14.6.1 Project 1 475

Chapter 15 Managing the Complexity of Optimum Demodulation 477

15.1 Linear Modulations 478

15.1.1 MLWD for Linear Modulation 479

15.1.2 Error Rate Evaluation for Linear Modulation 482

15.1.3 Spectral Characteristics of Linear Modulation 486

15.1.4 Example:Square Quadrature Amplitude Modulation 486

15.1.5 Summary of Linear Modulation 486

15.2 Orthogonal Modulations 489

15.3 Orthogonal Modulation Examples 492

15.3.1 Orthogonal Frequency Division Multiplexing 492

15.3.2 Orthogonal Code Division Multiplexing 498

15.3.3 Binary Stream Modulation 502

15.4 Conclusions 506

15.5 Homework Problems 507

15.6 Example Solutions 524

15.7 Miniprojects 529

15.7.1 Project 1 530

15.7.2 Project 2 530

15.7.3 Project 3 530

Chapter 16 Spectrally Efficient Data Transmission 533

16.1 Spectral Containment 533

16.2 Squared Cosine Pulse 535

16.3 Spectral Shaping in OFDM 537

16.4 Spectral Shaping in Linear Stream Modulations 539

16.5 Testing Orthogonal Modulations 543

16.5.1 The Scatter Plot 544

16.5.2 Stream Modulations 547

16.6 Conclusions 550

16.7 Homework Problems 550

16.8 Example Solutions 554

16.9 Miniprojects 555

16.9.1 Project 1 555

16.9.2 Project 2 557

16.9.3 Project 3 558

16.9.4 Project 4 559

Chapter 17 Orthogonal Modulations with Memory 561

17.1 Canonical Problems 561

17.2 Orthogonal Modulations with Memory 562

17.2.1 MLWD for Orthogonal Modulations with Memory 564

17.2.2 An Example OMWM Providing Better Fidelity 565

17.2.3 Discussion 567

17.3 Spectral Characteristics of Stream OMWM 569

17.3.1 An Example OMWM with a Modified Spectrum 569

17.3.2 Spectrum of OMWM for Large Kb 571

17.4 Varying Transmission Rates with OMWM 576

17.4.1 Spectrum of Stream Modulations with Nnm>1 577

17.4.2 Example R<1:Convolutional Codes 581

17.4.3 Example R>1:Trellis Codes 583

17.4.4 Example for Spectral Shaping:Miller Code 586

17.5 Conclusions 588

17.6 Homework Problems 590

17.7 Example Solutions 596

17.8 Miniprojects 598

17.8.1 Project 1 598

Appendix A Useful Formulas 601

Appendix B Notation 605

Appendix C Acronyms 609

Appendix D Fourier Transforms:f versus ω 611

Appendix E Further Reading and Bibliography 613

Index 617