Chapter 1 Introduction 1
1.1 Historical Perspectives on Communication Theory 1
1.2 Goals for This Text 3
1.3 Modern Communication System Engineering 4
1.4 Technology’s Impact on This Text 6
1.5 Book Overview 7
1.5.1 Mathematical Foundations 7
1.5.2 Analog Communication 8
1.5.3 Noise in Communication Systems 9
1.5.4 Fundamentals of Digital Communication 10
1.6 Homework Problems 10
PART 1 MATHEMATICAL FOUNDATIONS 13
Chapter 2 Signals and Systems Review 15
2.1 Signal Classification 15
2.1.1 Energy versus Power Signals 15
2.1.2 Periodic versus Aperiodic 18
2.1.3 Real versus Complex Signals 19
2.1.4 Continuous Time Signals versus Discrete Time Signals 20
2.2 Frequency Domain Characterization of Signals 20
2.2.1 Fourier Series 20
2.2.2 Fourier Transform 23
2.2.3 Bandwidth of Signals 28
2.2.4 Fourier Transform Representation of Periodic Signals 30
2.2.5 Laplace Transforms 32
2.3 Linear Time-Invariant Systems 32
2.4 Utilizing Matlab 37
2.4.1 Sampling 37
2.4.2 Integration 38
2.4.3 Commonly Used Functions 38
2.5 Homework Problems 39
2.6 Example Solutions 47
2.7 Miniprojects 50
2.7.1 Project 1 50
2.7.2 Project 2 51
Chapter 3 Review of Probability and Random Variables 53
3.1 Axiomatic Definitions of Probability 53
3.2 Random Variables 58
3.2.1 Cumulative Distribution Function 58
3.2.2 Probability Density Function 60
3.2.3 Moments and Statistical Averages 61
3.2.4 The Gaussian Random Variable 62
3.2.5 A Transformation of a Random Variable 64
3.3 Multiple Random Variables 66
3.3.1 Joint Density and Distribution Functions 66
3.3.2 Joint Moments and Statistical Averages 68
3.3.3 Two Gaussian Random Variables 68
3.3.4 Transformations of Random Variables 71
3.3.5 Central Limit Theorem 73
3.3.6 Multiple Dimensional Gaussian Random Variables 74
3.4 Homework Problems 75
3.5 Example Solutions 85
3.6 Miniprojects 88
3.6.1 Project 1 88
Chapter 4 Complex Baseband Representation of Bandpass Signals 91
4.1 Introduction 91
4.2 Baseband Representation of Bandpass Signals 92
4.3 Visualization of Complex Envelopes 96
4.4 Spectral Characteristics of the Complex Envelope 99
4.4.1 Basics 99
4.4.2 Bandwidth of Bandpass Signals 103
4.5 Power of Carrier Modulated Signals 104
4.6 Linear Systems and Bandpass Signals 104
4.7 Conclusions 108
4.8 Homework Problems 108
4.9 Example Solutions 120
4.10 Miniprojects 123
4.10.1 Project 1 123
4.10.2 Project 2 123
PART 2 ANALOG COMMUNICATION 125
Chapter 5 Analog Communications Basics 127
5.1 Message Signal Characterization 127
5.2 Analog Transmission 131
5.2.1 Analog Modulation 132
5.2.2 Analog Demodulation 132
5.3 Performance Metrics for Analog Communication 134
5.4 Preview of Pedagogy 137
5.5 Homework Problems 138
5.6 Example Solutions 141
Chapter 6 Amplitude Modulation 145
6.1 Linear Modulation 145
6.1.1 Modulator and Demodulator 149
6.1.2 Coherent Demodulation 150
6.1.3 DSB-AM Conclusions 152
6.2 Affine Modulation 152
6.2.1 Modulator and Demodulator 156
6.2.2 LC-AM Conclusions 160
6.3 Quadrature Modulations 160
6.3.1 VSB Filter Design 161
6.3.2 Single Sideband AM 163
6.3.3 Modulator and Demodulator 166
6.3.4 Transmitted Reference Based Demodulation 167
6.3.5 Quadrature Modulation Conclusions 171
6.4 Homework Problems 171
6.5 Example Solutions 186
6.6 Miniprojects 188
6.6.1 Project 1 189
6.6.2 Project 2 189
6.6.3 Project 3 190
Chapter 7 Analog Angle Modulation 191
7.1 Angle Modulation 191
7.1.1 Angle Modulators 196
7.2 Spectral Characteristics 197
7.2.1 A Sinusoidal Message Signal 197
7.2.2 General Results 204
7.3 Demodulation of Angle Modulations 209
7.4 Comparison of Analog Modulation Techniques 214
7.5 Homework Problems 215
7.6 Example Solutions 227
7.7 Miniprojects 229
7.7.1 Project 1 229
7.7.2 Project 2 230
Chapter 8 More Topics in Analog Communications 231
8.1 Phase-Locked Loops 231
8.1.1 General Concepts 231
8.1.2 PLL Linear Model 234
8.2 PLL-Based Angle Demodulation 234
8.2.1 General Concepts 234
8.2.2 PLL Linear Model 236
8.3 Multiplexing Analog Signals 238
8.3.1 Quadrature Carrier Multiplexing 239
8.3.2 Frequency Division Multiplexing 240
8.4 Conclusions 243
8.5 Homework Problems 243
8.6 Example Solutions 249
8.7 Miniprojects 250
8.7.1 Project 1 250
PART 3 NOISE IN COMMUNICATIONS SYSTEMS 251
Chapter 9 Random Processes 253
9.1 Basic Definitions 254
9.2 Gaussian Random Processes 257
9.3 Stationary Random Processes 261
9.3.1 Basics 262
9.3.2 Gaussian Processes 263
9.3.3 Frequency Domain Representation 267
9.4 Thermal Noise 271
9.5 Linear Systems and Random Processes 275
9.6 The Solution of the Canonical Problem 279
9.7 Homework Problems 282
9.8 Example Solutions 294
9.9 Miniprojects 296
9.9.1 Project 1 296
9.9.2 Project 2 296
Chapter 10 Noise in Bandpass Communication Systems 299
10.1 Bandpass Random Processes 302
10.2 Characteristics of the Complex Envelope 304
10.2.1 Three Important Results 304
10.2.2 Important Corollaries 307
10.3 Spectral Characteristics 310
10.4 The Solution of the Canonical Bandpass Problem 313
10.5 Complex Additive White Gaussian Noise 316
10.6 Conclusion 317
10.7 Homework Problems 317
10.8 Example Solutions 325
10.9 Miniprojects 327
10.9.1 Project 328
Chapter 11 Fidelity in Analog Demodulation 329
11.1 Unmodulated Signals 329
11.2 Bandpass Demodulation 332
11.2.1 Coherent Demodulation 333
11.3 Coherent Amplitude Demodulation 334
11.3.1 Coherent Demodulation 334
11.4 Noncoherent Amplitude Demodulation 337
11.5 Angle Demodulations 340
11.5.1 Phase Modulation 340
11.5.2 Frequency Modulation 343
11.6 Improving Fidelity with Pre-Emphasis 345
11.7 Final Comparisons 347
11.8 Homework Problems 348
11.9 Example Solutions 354
11.10 Miniprojects 357
11.10.1 Project 1 357
11.10.2 Project 2 357
PART 4 FUNDAMENTALS OF DIGITAL COMMUNICATION 359
Chapter 12 Digital Communication Basics 361
12.1 Digital Transmission 362
12.1.1 Digital Modulation 362
12.1.2 Digital Demodulation 363
12.2 Performance Metrics for Digital Communication 364
12.2.1 Fidelity 364
12.2.2 Complexity 365
12.2.3 Bandwidth Efficiency 366
12.2.4 Other Important Characteristics 367
12.3 Some Limits on Performance of Digital Communication Systems 368
12.4 Conclusion 370
12.5 Homework Problems 371
12.6 Example Solutions 374
12.7 Miniprojects 374
12.7.1 Project 1 375
Chapter 13 Optimal Single Bit Demodulation Structures 377
13.1 Introduction 377
13.1.1 Statistical Hypothesis Testing 379
13.1.2 Statistical Hypothesis Testing in Digital Communications 381
13.1.3 Digital Communications Design Problem 382
13.2 Minimum Probability of Error Bit Demodulation 383
13.2.1 Characterizing the Filter Output 385
13.2.2 Uniform A Priori Probability 387
13.3 Analysis of Demodulation Fidelity 390
13.3.1 Erf Function 391
13.3.2 Uniform A Priori Probability 392
13.4 Filter Design 394
13.4.1 Maximizing Effective SNR 394
13.4.2 The Matched Filter 396
13.4.3 MLBD with the Matched Filter 397
13.4.4 More Insights on the Matched Filter 399
13.5 Signal Design 401
13.6 Spectral Characteristics 404
13.7 Examples 406
13.7.1 Frequency Shift Keying 406
13.7.2 Phase Shift Keying 412
13.7.3 Discussion 415
13.8 Homework Problems 416
13.9 Example Solutions 426
13.10 Miniprojects 431
13.10.1 Project 1 431
13.10.2 Project 2 433
Chapter 14 Transmitting More Than One Bit 435
14.1 A Reformulation for 1 Bit Transmission 435
14.2 Optimum Demodulation 437
14.2.1 Optimum Word Demodulation Receivers 438
14.2.2 Analysis of Demodulation Fidelity 441
14.2.3 Union Bound 444
14.2.4 Signal Design 450
14.3 Examples 451
14.3.1 M-ary FSK 451
14.3.2 M-ary PSK 455
14.3.3 Discussion 460
14.4 Homework Problems 461
14.5 Example Solutions 471
14.6 Miniprojects 474
14.6.1 Project 1 475
Chapter 15 Managing the Complexity of Optimum Demodulation 477
15.1 Linear Modulations 478
15.1.1 MLWD for Linear Modulation 479
15.1.2 Error Rate Evaluation for Linear Modulation 482
15.1.3 Spectral Characteristics of Linear Modulation 486
15.1.4 Example:Square Quadrature Amplitude Modulation 486
15.1.5 Summary of Linear Modulation 486
15.2 Orthogonal Modulations 489
15.3 Orthogonal Modulation Examples 492
15.3.1 Orthogonal Frequency Division Multiplexing 492
15.3.2 Orthogonal Code Division Multiplexing 498
15.3.3 Binary Stream Modulation 502
15.4 Conclusions 506
15.5 Homework Problems 507
15.6 Example Solutions 524
15.7 Miniprojects 529
15.7.1 Project 1 530
15.7.2 Project 2 530
15.7.3 Project 3 530
Chapter 16 Spectrally Efficient Data Transmission 533
16.1 Spectral Containment 533
16.2 Squared Cosine Pulse 535
16.3 Spectral Shaping in OFDM 537
16.4 Spectral Shaping in Linear Stream Modulations 539
16.5 Testing Orthogonal Modulations 543
16.5.1 The Scatter Plot 544
16.5.2 Stream Modulations 547
16.6 Conclusions 550
16.7 Homework Problems 550
16.8 Example Solutions 554
16.9 Miniprojects 555
16.9.1 Project 1 555
16.9.2 Project 2 557
16.9.3 Project 3 558
16.9.4 Project 4 559
Chapter 17 Orthogonal Modulations with Memory 561
17.1 Canonical Problems 561
17.2 Orthogonal Modulations with Memory 562
17.2.1 MLWD for Orthogonal Modulations with Memory 564
17.2.2 An Example OMWM Providing Better Fidelity 565
17.2.3 Discussion 567
17.3 Spectral Characteristics of Stream OMWM 569
17.3.1 An Example OMWM with a Modified Spectrum 569
17.3.2 Spectrum of OMWM for Large Kb 571
17.4 Varying Transmission Rates with OMWM 576
17.4.1 Spectrum of Stream Modulations with Nnm>1 577
17.4.2 Example R<1:Convolutional Codes 581
17.4.3 Example R>1:Trellis Codes 583
17.4.4 Example for Spectral Shaping:Miller Code 586
17.5 Conclusions 588
17.6 Homework Problems 590
17.7 Example Solutions 596
17.8 Miniprojects 598
17.8.1 Project 1 598
Appendix A Useful Formulas 601
Appendix B Notation 605
Appendix C Acronyms 609
Appendix D Fourier Transforms:f versus ω 611
Appendix E Further Reading and Bibliography 613
Index 617