《离散和切换动力系统 英文版》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:罗朝俊著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2012
  • ISBN:9787040348217
  • 页数:285 页
图书介绍:本书用一种清晰简明、独特的观点讨论非线性离散动力系统稳定性和分叉理论,并分析了离散动力系统中稳定性及其切换的复杂性。本书首先介绍了含多重特征根的线性离散系统的解析解和稳定性理论,给出了详细的离散非线性动力系统的稳定性和奇异性分类;然后通过众多例子展示离散动力系统中的混沌及其分形性,并应用正映射和负映射讨论了非线性离散动力系统完整动力学包括其不动点和混沌的阴阳解。本书还系统地讨论了具有搬运跳跃律的切换系统稳定性,将其作为描述连续和离散混合系统最一般的形式;并介绍了一种广义的符号动力学:映射动力学,通过此动力学讨论在边界不连续动力系统的擦边分叉以及奇异吸引子碎裂机理,以帮助读者更好地理解离散、切换不连续和边界不连续动力系统中的规则性和复杂性。本书可作为应用数学、物理、工程学、经济动力学和金融专业的大学生教材或参考书,也可供该领域的教授和研究人员参考。

Chapter 1 Linear Discrete Systems and Stability 1

1.1 Basic iterative solutions 1

1.2 Linear discrete systems with distinct eigenvalues 3

1.3 Linear discrete systems with repeated eigenvalues 8

1.4 Stability and boundary 16

1.5 Lower-dimensional discrete systems 31

1.5.1 One-dimensional systems 31

1.5.2 Planar discrete linear systems 32

1.5.3 Three-dimensional discrete systems 46

Reference 62

Chapter 2 Stability,Bifurcation and Routes to Chaos 63

2.1 Discrete dynamical systems 63

2.2 Fixed points and stability 65

2.3 Bifurcation and stability switching 80

2.3.1 Stability and switching 87

2.3.2 Bifurcations 111

2.4 Routes to chaos 124

2.4.1 One-dimensional maps 124

2.4.2 Two-dimensional maps 130

References 131

Chapter 3 Fractality and Complete Dynamics 133

3.1 Multifractals in 1-D iterative maps 133

3.1.1 Similar structures in period doubling 134

3.1.2 Fractality of chaos via period doubling bifurcations 139

3.1.3 An example 141

3.2 Bouncing ball dynamics 146

3.2.1 Periodic motions 148

3.2.2 Stability and bifurcations 151

3.2.3 Numerical illustrations 158

3.3 Positive and negative dynamics of discrete systems 162

3.4 Complete dynamics of Henon map 170

References 175

Chapter 4 Switching Systems with Transports 177

4.1 Continuous subsystems 177

4.2 Switching systems 179

4.3 Measuring functions and stability 186

4.4 Mappings and periodic flows 205

4.5 Linear switching systems 211

4.5.1 Vibrations with piecewise forces 214

4.5.2 Vector fields switching 222

References 227

Chapter 5 Mapping Dynamics and Fragmentation 229

5.1 Discontinuous dynamical systems 229

5.2 G-functions to boundaries 232

5.3 Mapping dynamics 235

5.4 A semi-active suspension system 241

5.4.1 Analytical dynamics 243

5.4.2 Illustrations 248

5.5 Grazing singular sets and fragmentation 257

5.6 Fragmentized strange attractors 269

References 281

Index 283