1 History of Optics 1
1.1 Past 1
1.2 Present 5
1.3 Future 7
Problems 8
2 The Main Areas of Optics 9
2.1 Geometrical Optics 9
2.2 Wave Optics 10
2.3 Quantum Optics 11
2.4 Statistical Optics 12
3 Fundamentals of Wave Optics 15
3.1 Maxwell's Equations 15
3.2 The Wave Equation 17
3.3 Wayes 18
3.3.1 One-Dimensional Waves 18
3.3.2 Plane Waves 21
3.3.3 Spherical Waves 22
3.3.4 Bessel Waves 23
3.4 Intensity of a Light Wave 25
Problems 28
4 Coherence 31
4.1 Temporal Coherence 31
4.2 Spatial Coherence 39
4.3 Spatiotemporal Coherence 46
4.4 Complex Representation of the Light Field 48
4.5 Stellar Interferometry 49
4.6 Fourier Spectroscopy 51
4.7 Intensity Correlation 53
Problems 55
5 Multiple-Beam Interference 59
5.1 Fabry-Perot Interferometer 59
5.2 Mode Spectrum ofa Laser 66
5.2.1 Interference Spectroscopy 67
5.2.2 Difference-Frequency Analysis 69
5.3 Dual-Recycling Interferometer 71
Problems 73
6 Speckles 75
6.1 Intensity Statistics 76
6.2 Speckle Sizes 78
6.3 Speckle Photography 82
6.3.1 Double-Exposure Technique 84
6.3.2 Time-Average Technique 87
6.4 Flow Diagnostics 90
6.5 Stellar Speckle Interferometry 93
Problems 96
7 Holography 99
7.1 Principle of Holography 99
7.1.1 Hologram Recording 100
7.1.2 Image Reconstruction 102
7.1.3 Location of the Images 104
7.1.4 Phase Conjugation 106
7.2 The Imaging Equations of Holography 108
7.3 Holographic Arrangements 112
7.3.1 In-line Holograms 112
7.3.2 Reflection Holograms 113
7.3.3 Transmission Holograms 114
7.3.4 White-Light Holograms 116
7.3.5 Rainbow Holograms 118
7.3.6 Holographic Cinematography 120
7.4 Digital Holography 120
7.4.1 Direct Simulation 121
7.4.2 Simulation with Square Light Waves 128
Problems 130
8 Interferometry 133
8.1 Mach-Zehnder Interferometer 133
8.2 Sagnac Interferometer 134
8.3 Holographic Interferometry 138
8.3.1 Real-Time Method 138
8.3.2 Double-Exposure Method 138
8.3.3 Time-Average Method 140
8.4 Theory of Holographic Interferometry 140
8.4.1 Real-Time and Double-Exposure Method 140
8.4.2 Time-Average Method 142
8.4.3 Time-Average Method in Real Time 143
Problems 145
9 Fourier Optics 147
9.1 Scalar Diffraction Theory 147
9.1.1 Fresnel Approximation 148
9.1.2 Fraunhofer Approximation 150
9.2 Fourier Transform by a Lens 152
9.3 Optical Fourier Spectra 153
9.3.1 Point Source 154
9.3.2 Plane Wave 154
9.3.3 Infinitely Long Slit 155
9.3.4 Two Point Sources 158
9.3.5 Cosine Grating 158
9.3.6 Circular Aperture 160
9.3.7 Compound Diffracting Systems 162
9.4 Coherent Optical Filtering 164
9.4.1 Low-Pass Filter or Spatial Frequency Filter 165
9.4.2 High-Pass Filter or Dark Field Method 166
9.4.3 Phase Filter or Phase Contrast Method 168
9.4.4 Half-Plane Filter or Schlieren Method 169
9.4.5 Raster Elimination 170
9.4.6 Demonstration Experiment 171
9.4.7 Holographic Filters 172
9.4.8 Pattern Recognition 174
Problems 177
10 Nonlinear Dynamics of the Laser 179
10.1 The Laser Principle 179
10.2 Laser Rate Equations 181
10.3 Stationary Operation 185
10.4 Stability Analysis 186
10.5 Chaotic Dynamics 191
Problems 197
11 Nonlinear Optics 199
11.1 Two-Wave Interaction 199
11.1.1 Two-Photon Absorption 200
11.1.2 Two-Photon Ionization 201
11.2 Three-Wave Interaction 202
11.2.1 Second-Harmonic Generation 202
11.2.2 Sum-Frequency Generation 202
11.2.3 Difference-Frequency Generation 203
11.2.4 Optical Parametric Amplifier 204
11.3 Four-Wave Interaction 204
11.4 Multi-photon Interaction 205
11.4.1 Frequency Multiplication 205
11.4.2 Multi-photon Absorption and Ionization 206
11.5 Further Nonlinear Optical Phenomena 207
11.6 Nonlinear Potentials 208
11.7 Interaction of Light Waves 210
11.7.1 Three-Wave Interaction 212
11.7.2 Scalar Three-Wave Interaction 218
11.7.3 Second-Harmonic Generation 219
11.7.4 Optical Parametric Amplifier 222
11.7.5 Optical Parametric Oscillator 223
11.7.6 Three-Wave Interaction in the Photon Picture 224
Problems 226
12 Fiber Optics 229
12.1 Glass Fibers 230
12.1.1 Profile 230
12.1.2 Guided Waves 231
12.1.3 Attenuation 233
12.2 Fiber Sensors 235
12.3 Optical Solitons 236
12.3.1 Dispersion 237
12.3.2 Nonlinearity 241
12.4 Fiber-Optic Signal Processing 245
Problems 246
A Appendix 249
A.1 The Fourier Transform 249
A.1.1 One-Dimensional Fourier Transform 249
A.1.2 Two-Dimensional Fourier Transform 250
A.1.3 Convolution and Autocorrelation 251
A.1.4 Properties of the Fourier Transform 252
A.1.5 Selected Functions and Their Fourier Transforms 254
Problems 254
A.2 Solutions to Problems 257
Index 281