CHAPTER 1 Introduction 2
1.1 What and How? 2
1.2 Physical Origins and Rate Equations 3
1.2.1 Conduction 3
1.2.2 Convection 6
1.2.3 Radiation 9
1.2.4 Relationship to Thermodynamics 12
1.3 The Conservation of Energy Requirement 13
1.3.1 Conservation of Energy for a Control Volume 13
1.3.2 The Surface Energy Balance 21
1.3.3 Application of the Conservation Laws:Methodology 24
1.4 Analysis of Heat Transfer Problems:Methodology 24
1.5 Relevance of Heat Transfer 27
1.6 Units and Dimensions 28
1.7 Summary 31
Problems 34
CHAPTER 2 Introduction to Conduction 51
2.1 The Conduction Rate Equation 52
2.2 The Thermal Properties of Matter 54
2.2.1 Thermal Conductivity 54
2.2.2 Other Relevant Properties 58
2.3 The Heat Diffusion Equation 61
2.4 Boundary and Initial Conditions 68
2.5 Summary 72
References 73
Problems 73
CHAPTER 3 One-Dimensional,Steady-State Conduction 87
3.1 The Plane Wall 88
3.1.1 Temperature Distribution 88
3.1.2 Thermal Resistance 90
3.1.3 The Composite Wall 91
3.1.4 Contact Resistance 93
3.2 An Alternative Conduction Analysis 101
3.3 Radial Systems 104
3.3.1 The Cylinder 105
3.3.2 The Sphere 110
3.4 Summary of One-Dimensional Conduction Results 114
3.5 Conduction with Thermal Energy Generation 114
3.5.1 The Plane Wall 115
3.5.2 Radial Systems 121
3.5.3 Application of Resistance Concepts 126
3.6 Heat Transfer from Extended Surfaces 126
3.6.1 A General Conduction Analysis 128
3.6.2 Fins of Uniform Cross-Sectional Area 130
3.6.3 Fin Performance 136
3.6.4 Fins of Nonuniform Cross-Sectional Area 139
3.6.5 Overall Surface Efficiency 140
3.7 Summary 149
References 152
Problems 152
CHAPTER 4 Two-Dimensional,Steady-State Conduction 183
4.1 Alternative Approaches 184
4.2 The Method of Separation of Variables 185
4.3 The Graphical Method 189
4.3.1 Methodology of Constructing a Flux Plot 190
4.3.2 Determination of the Heat Transfer Rate 191
4.3.3 The Conduction Shape Factor 192
4.4 Finite-Difference Equations 196
4.4.1 The Nodal Network 196
4.4.2 Finite-Difference Form of the Heat Equation 197
4.4.3 The Energy Balance Method 198
4.5 Finite-Difference Solutions 205
4.5.1 The Matrix Inversion Method 206
4.5.2 Gauss-Seidel Iteration 207
4.5.3 Some Precautions 213
4.6 Summary 218
References 219
Problems 219
CHAPTER 5 Transient Conduction 239
5.1 The Lumped Capacitance Method 240
5.2 Validity of the Lumped Capacitance Method 243
5.3 General Lumped Capacitance Analysis 247
5.4 Spatial Effects 254
5.5 The Plane Wall with Convection 256
5.5.1 Exact Solution 256
5.5.2 Approximate Solution 257
5.5.3 Total Energy Transfer 258
5.5.4 Additional Considerations 259
5.6 Radial Systems with Convection 260
5.6.1 Exact Solutions 260
5.6.2 Approximate Solutions 261
5.6.3 Total Energy Transfer 261
5.6.4 Additional Considerations 262
5.7 The Semi-Infinite Solid 268
5.8 Multidimensional Effects 274
5.9 Finite-Difference Methods 280
5.9.1 Discretization of the Heat Equation:The Explicit Method 280
5.9.2 Discretization of the Heat Equation:The Implicit Method 288
5.10 Summary 296
References 297
Problems 297
CHAPTER 6 Introduction to Convection 325
6.1 The Convection Transfer Problem 326
6.2 The Convection Boundary Layers 331
6.2.1 The Velocity Boundary Layer 331
6.2.2 The Thermal Boundary Layer 332
6.2.3 The Concentration Boundary Layer 333
6.2.4 Significance of the Boundary Layers 335
6.3 Laminar and Turbulent Flow 336
6.4 Boundary Layer Equations 338
6.4.1 The Convection Transfer Equations 339
6.4.2 The Boundary Layer Approximations 344
6.5 Boundary Layer Similarity:The Normalized Boundary Layer Equations 346
6.5.1 Boundary Layer Similarity Parameters 346
6.5.2 Functional Form of the Solutions 348
6.6 Physical Significance of the Dimensionless Parameters 353
6.7 Boundary Layer Analogies 356
6.7.1 The Heat and Mass Transfer Analogy 356
6.7.2 Evaporative Cooling 360
6.7.3 The Reynolds Analogy 363
6.8 The Effects of Turbulence 364
6.9 The Convection Coefficients 367
6.10 Summary 368
References 369
Problems 369
CHAPTER 7 External Flow 385
7.1 The Empirical Method 387
7.2 The Flat Plate in Parallel Flow 389
7.2.1 Laminar Flow:A Similarity Solution 389
7.2.2 Turbulent Flow 395
7.2.3 Mixed Boundary Layer Conditions 396
7.2.4 Special Cases 397
7.3 Methodology for a Convection Calculation 399
7.4 The Cylinder in Cross Flow 401
7.4.1 Flow Considerations 407
7.4.2 Convection Heat and Mass Transfer 409
7.5 The Sphere 415
7.6 Flow Across Banks of Tubes 418
7.7 Impinging Jets 428
7.7.1 Hydrodynamic and Geometric Considerations 428
7.7.2 Convection Heat and Mass Transfer 430
7.8 Packed Beds 434
7.9 Summary 435
References 437
Problems 438
CHAPTER 8 Internal Flow 465
8.1 Hydrodynamic Considerations 466
8.1.1 Flow Conditions 466
8.1.2 The Mean Velocity 467
8.1.3 Velocity Profile in the Fully Developed Region 468
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 470
8.2 Thermal Considerations 471
8.2.1 The Mean Temperature 472
8.2.2 Newton’s Law of Cooling 473
8.2.3 Fully Developed Conditions 473
8.3 The Energy Balance 477
8.3.1 General Considerations 477
8.3.2 Constant Surface Heat Flux 478
8.3.3 Constant Surface Temperature 481
8.4 Laminar Flow in Circular Tubes:Thermal Analysis and Convection Correlations 485
8.4.1 The Fully Developed Region 485
8.4.2 The Entry Region 489
8.5 Convection Correlations:Turbulent Flow in Circular Tubes 491
8.6 Convection Correlations:Noncircular Tubes 495
8.7 The Concentric Tube Annulus 500
8.8 Heat Transfer Enhancement 502
8.9 Convection Mass Transfer 503
8.10 Summary 506
References 509
Problems 509
CHAPTER 9 Free Convection 533
9.1 Physical Considerations 534
9.2 The Governing Equations 537
9.3 Similarity Considerations 539
9.4 Laminar Free Convection on a Vertical Surface 540
9.5 The Effects of Turbulence 542
9.6 Empirical Correlations:External Free Convection Flows 545
9.6.1 The Vertical Plate 545
9.6.2 Inclined and Horizontal Plates 548
9.6.3 The Long Horizontal Cylinder 554
9.6.4 Spheres 557
9.7 Free Convection within Parallel Plate Channels 558
9.7.1 Vertical Channels 559
9.7.2 Inclined Channels 561
9.8 Empirical Correlations:Enclosures 561
9.8.1 Rectangular Cavities 561
9.8.2 Concentric Cylinders 564
9.8.3 Concentric Spheres 565
9.9 Combined Free and Forced Convection 567
9.10 Convection Mass Transfer 568
9.11 Summary 569
References 570
Problems 572
CHAPTER 10 Boiling and Condensation 593
10.1 Dimensionless Parameters in Boiling and Condensation 594
10.2 Boiling Modes 595
10.3 Pool Boiling 596
10.3.1 The Boiling Curve 596
10.3.2 Modes of Pool Boiling 598
10.4 Pool Boiling Correlations 601
10.4.1 Nucleate Pool Boiling 602
10.4.2 Critical Heat Flux for Nucleate Pool Boiling 603
10.4.3 Minimum Heat Flux 603
10.4.4 Film Pool Boiling 604
10.4.5 Parametric Effects on Pool Boiling 605
10.5 Forced-Convection Boiling 610
10.5.1 External Forced-Convection Boiling 611
10.5.2 Two-Phase Flow 611
10.6 Condensation:Physical Mechanisms 613
10.7 Laminar Film Condensation on a Vertical Plate 615
10.8 Turbulent Film Condensation 619
10.9 Film Condensation on Radial Systems 623
10.10 Film Condensation in Horizontal Tubes 626
10.11 Dropwise Condensation 627
10.12 Summary 627
References 628
Problems 630
CHAPTER 11 Heat Exchangers 641
11.1 Heat Exchanger Types 642
11.2 The Overall Heat Transfer Coefficient 645
11.3 Heat Exchanger Analysis:Use of the Log Mean Temperature Difference 647
11.3.1 The Parallel-Flow Heat Exchanger 648
11.3.2 The Counterflow Heat Exchanger 651
11.3.3 Special Operating Conditions 652
11.3.4 Multipass and Cross-Flow Heat Exchangers 652
11.4 Heat Exchanger Analysis:The Effectiveness-NTU Method 659
11.4.1 Definitions 660
11.4.2 Effectiveness-NTU Relations 661
11.5 Methodology of a Heat Exchanger Calculation 668
11.6 Compact Heat Exchangers 674
11.7 Summary 679
References 680
Problems 681
CHAPTER 12 Radiation:Processes and Properties 699
12.1 Fundamental Concepts 700
12.2 Radiation Intensity 703
12.2.1 Definitions 703
12.2.2 Relation to Emission 706
12.2.3 Relation to Irradiation 709
12.2.4 Relation to Radiosity 711
12.3 Blackbody Radiation 712
12.3.1 The Planck Distribution 713
12.3.2 Wien’s Displacement Law 713
12.3.3 The Stefan-Boltzmann Law 714
12.3.4 Band Emission 715
12.4 Sufrace Emission 720
12.5 Surface Absorption,Reflection,and Transmission 728
12.5.1 Absorptivity 730
12.5.2 Reflectivity 731
12.5.3 Transmissivity 732
12.5.4 Special Considerations 733
12.6 Kirchhoff s Law 738
12.7 The Gray Surface 740
12.8 Environmental Radiation 746
12.9 Summary 752
References 756
Problems 756
CHAPTER 13 Radiation Exchange Between Surfaces 789
13.1 The View Factor 790
13.1.1 The View Factor Integral 790
13.1.2 View Factor Relations 791
13.2 Blackbody Radiation Exchange 800
13.3 Radiation Exchange Between Diffuse,Gray Surfaces in an Enclosure 803
13.3.1 Net Radiation Exchange at a Surface 803
13.3.2 Radiation Exchange Between Surfaces 805
13.3.3 The Two-Surface Enclosure 810
13.3.4 Radiation Shields 812
13.3.5 The Reradiating Surface 814
13.4 Multimode Heat Transfer 818
13.5 Additional Effects 821
13.5.1 Volumetric Absorption 822
13.5.2 Gaseous Emission and Absorption 822
13.6 Summary 827
References 828
Problems 828
CHAPTER 14 Diffusion Mass Transfer 859
14.1 Physical Origins and Rate Equations 860
14.1.1 PhysicalOrigins 860
14.1.2 Mixture Composition 861
14.1.3 Fick’s Law of Diffusion 862
14.1.4 Restrictive Conditions 863
14.1.5 Mass Diffusion Coefficient 867
14.2 Conservation of Species 867
14.2.1 Conservation of Species for a Control Volume 868
14.2.2 The Mass Diffusion Equation 868
14.3 Boundary and Initial Conditions 871
14.4 Mass Diffusion Without Homogeneous Chemical Reactions 874
14.4.1 Stationary Media with Specified Surface Concentrations 875
14.4.2 Stationary Media with Catalytic Surface Reactions 878
14.4.3 Equimolar Counterdiffusion 881
14.4.4 Evaporation in a Column 884
14.5 Mass Diffusion with Homogeneous Chemical Reactions 886
14.6 Transient Diffusion 889
14.7 Summary 893
References 894
Problems 895
APPENDIX A Thermophysical Properties of Matter 903
APPENDIX B Mathematical Relations and Functions 933
APPENDIX C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional,Steady-State Systems 939
APPENDIX D Graphical Representation of One-Dimensional,Transient Conduction in the Plane Wall,Long Cylinder,and Sphere 947
APPENDIX E The Convection Transfer Equations 953
E.1 Conservation of Mass 954
E.2 Newton’s Second Law of Motion 955
E.3 Conservation of Energy 958
E.4 Conservation of Species 961
APPENDIX F An Integral Laminar Boundary Layer Solution for Parallel Flow Over a Flat Plate 963
Index 969