1 Introduction 1
2 Modeling of Marine Vehicles 5
2.1 Kinematics 6
2.1.1 Euler Angles 7
2.1.2 Euler Parameters 12
2.1.3 Euler-Rodrigues Parameters 17
2.1.4 Comments on Parameter Alternatives 17
2.2 Newtonian and Lagrangian Mechanics 18
2.2.1 Newton-Euler Formulation 18
2.2.2 Lagrangian Formulation 19
2.2.3 Kirchhoff’s Equations of Motion 20
2.3 Rigid-Body Dynamics 21
2.3.1 6 DOF Rigid-Body Equations of Motion 25
2.4 Hydrodynamic Forces and Moments 30
2.4.1 Added Mass and Inertia 32
2.4.2 Hydrodynamic Damping 42
2.4.3 Restoring Forces and Moments 46
2.5 Equations of Motion 48
2.5.1 Vector Representations 48
2.5.2 Useful Properties of the Nonlinear Equations of Motion 49
2.5.3 The Lagrangian Versus the Newtonian Approach 52
2.6 Conclusions 54
2.7 Exercises 55
3 Environmental Disturbances 57
3.1 The Principle of Superposition 57
3.2 Wind-Generated Waves 60
3.2.1 Standard Wave Spectra 62
3.2.2 Linear Approximations to the Wave Spectra 69
3.2.3 Frequency of Encounter 72
3.2.4 Wave-Induced Forces and Moments 73
3.3 Wind 76
3.3.1 Standard Wind Spectra 76
3.3.2 Wind Forces and Moments 77
3.4 Ocean Currents 84
3.4.1 Current Velocity 84
3.4.2 Current-Induced Forces and Moments 85
3.5 Conclusions 90
3.6 Exercises 91
4 Stability and Control of Underwater Vehicles 93
4.1 ROV Equations of Motion 94
4.1.1 Thruster Model 94
4.1.2 Nonlinear ROV Equations of Motion 99
4.1.3 Linear ROV Equations of Motion 99
4.2 Stability of Underwater Vehicles 102
4.2.1 Open-Loop Stability 102
4.2.2 Closed-Loop Tracking Control 104
4.3 Conventional Autopilot Design 105
4.3.1 Joy-Stick Control Systems Design 105
4.3.2 Multivariable PID-Control Design for Nonlinear Systems 105
4.3.3 PID Set-Point Regulation in Terms of Lyapunov Stability 107
4.3.4 Linear Quadratic Optimal Control 112
4.4 Decoupled Control Design 114
4.4.1 Forward Speed Control 115
4.4.2 Automatic Steering 117
4.4.3 Combined Pitch and Depth Control 119
4.5 Advanced Autopilot Design for ROVs 125
4.5.1 Sliding Mode Control 125
4.5.2 State Feedback Linearization 137
4.5.3 Adaptive Feedback Linearization 143
4.5.4 Nonlinear Tracking (The Slotine and Li Algorithm) 146
4.5.5 Nonlinear Tracking (The Sadegh and Horowitz Algorithm) 151
4.5.6 Cascaded Adaptive Control (ROV and Actuator Dynamics) 152
4.5.7 Unified Passive Adaptive Control Design 155
4.5.8 Parameter Drift due to Bounded Disturbances 159
4.6 Conclusions 161
4.7 Exercises 162
5 Dynamics and Stability of Ships 167
5.1 Rigid-Body Ship Dynamics 168
5.2 The Speed Equation 169
5.2.1 Nonlinear Speed Equation 169
5.2.2 Linear Speed Equation 170
5.3 The Linear Ship Steering Equations 171
5.3.1 The Model of Davidson and Schiff (1946) 171
5.3.2 The Models of Nomoto (1957) 172
5.3.3 Non-Dimensional Ship Steering Equations of Motion 177
5.3.4 Determination of Hydrodynamic Derivatives 179
5.4 The Steering Machine 181
5.5 Stability of Ships 185
5.5.1 Basic Stability Definitions 185
5.5.2 Metacentric Stability 190
5.5.3 Criteria for Dynamic Stability in Straight-Line Motion 193
5.5.4 Dynamic Stability on Course 197
5.6 Nonlinear Ship Steering Equations 198
5.6.1 The Nonlinear Model of Abkowitz (1964) 198
5.6.2 The Nonlinear Model of Norrbin (1970) 199
5.6.3 The Nonlinear Model of Blanke (1981) 201
5.7 Coupled Equations for Steering and Rolling 202
5.7.1 The Model of Van Amerongen and Van Cappelle (1981) 202
5.7.2 The Model of Son and Nomoto (1981) 203
5.7.3 The Model of Christensen and Blanke (1986) 204
5.8 Steering Maneuvering Characteristics 206
5.8.1 Full-Scale Maneuvering Trials 207
5.8.2 The Norrbin Measure of Maneuverability 216
5.9 Conclusions 218
5.10 Exercises 218
6 Automatic Control of Ships 221
6.1 Filtering of First-Order Wave Disturbances 222
6.1.1 Dead-Band Techniques 223
6.1.2 Conventional Filter Design 224
6.1.3 Observer-Based Wave Filter Design 228
6.1.4 Kalman Filter Based Wave Filter Design 237
6.1.5 Wave Frequency Tracker 242
6.2 Forward Speed Control 246
6.2.1 Propellers as Thrust Devices 246
6.2.2 Control of Ship Speed 254
6.2.3 Speed Control for Cruising 257
6.3 Course-Keeping Autopilots 259
6.3.1 Autopilots of PID-Type 259
6.3.2 Compensation of Forward Speed Effects 263
6.3.3 Linear Quadratic Optimal Autopilot 265
6.3.4 Adaptive Linear Quadratic Optimal Control 271
6.4 Turning Controllers 273
6.4.1 PID-Control 276
6.4.2 Combined Optimal and Feedforward Turning Controller 277
6.4.3 Nonlinear Autopilot Design 278
6.4.4 Adaptive Feedback Linearization 281
6.4.5 Model Reference Adaptive Control 283
6.5 Track-Keeping Systems 289
6.5.1 Conventional Guidance System 291
6.5.2 Optimal Guidance System 293
6.6 Rudder-Roll Stabilization 295
6.6.1 A Mathematical Model for RRCS Design 296
6.6.2 Decoupled RRCS Design in Terms of Pole-Placement 300
6.6.3 Optimal Rudder-Roll Control System Design 302
6.7 Dynamic Ship Positioning Systems 307
6.7.1 Mathematical Modeling 309
6.7.2 Optimal State Estimation (Kalman Filtering) 314
6.7.3 Control System Design 317
6.8 Identification of Ship Dynamics 321
6.8.1 Parameter Identifiability 322
6.8.2 Indirect Model Reference Adaptive Systems 326
6.8.3 Continuous Least-Squares (CLS) Estimation 331
6.8.4 Recursive Least-Squares (RLS) Estimation 335
6.8.5 Recursive Maximum Likelihood (RML) Estimation 340
6.8.6 Recursive Prediction Error Method (RPEM) 342
6.8.7 State Augmented Extended Kalman Filter (EKF) 345
6.8.8 Biased Estimates:Slowly-Varying Disturbances 352
6.9 Conclusions 353
6.10 Exercises 353
7 Control of High-Speed Craft 357
7.1 Ride Control of Surface Effect Ships 357
7.1.1 Mathematical Modeling 358
7.1.2 State-Space Model 365
7.1.3 Robust Dissipative Control Design 367
7.1.4 Simulation and Full-Scale Results 373
7.1.5 Conclusions 379
7.2 Ride Control of Foilborne Catamarans 379
7.2.1 FoilCat Modeling 380
7.2.2 Control Systems Design 387
7.2.3 Stability and Maneuverability 395
7.2.4 FoilCat Performance 397
7.3 Conclusions 398
A Some Matrix Results 399
B Numerical Methods 401
B.1 Discretization of Continuous-Time Systems 401
B.1.1 Linear State-Space Models 401
B.1.2 Nonlinear State-Space Models 403
B.2 Numerical Integration 404
B.2.1 Euler’s Method 406
B.2.2 Adams-Bashforth’s 2nd-Order Method 408
B.2.3 Runge-Kutta 2nd-Order Method (Heun’s Method) 409
B.2.4 Runge-Kutta 4th-Order Method 409
B.3 Numerical Differentiation 410
C Stability Theory 411
C.1 Lyapunov Stability Theory 411
C.1.1 Lyapunov Stability for Autonomous Systems 411
C.1.2 Lyapunov Stability for Non-Autonomous Systems 412
C.2 Input-Output Stability 414
C.2.1 Some Basic Definitions 414
C.2.2 Lp -Stability 416
C.2.3 Feedback Stability 417
C.3 Passivity Theory 418
C.3.1 Passivity Interpretation of Mechanical Systems 418
C.3.2 Feedback Stability in the Sense of Passivity 421
C.3.3 Passivity in Linear Systems 421
C.3.4 Positive Real Systems 423
D Linear Quadratic Optimal Control 425
D.1 Solution of the LQ Tracker Problem 425
D.1.1 Linear Time-Varying Systems 426
D.1.2 Approximate Solution for Linear Time-Invariant Systems 427
D.2 Linear Quadratic Regulator 429
E Ship and ROV Models 431
E.1 Ship Models 431
E.1.1 Mariner Class Vessel 431
E.1.2 The ESSO 190000 dwt Tanker 435
E.1.3 Container Ship 440
E.2 Underwater Vehicle Models 447
E.2.1 Linear Model of a Deep Submergence Rescue Vehicle (DSRV) 447
E.2.2 Linear Model of a Swimmer Delivery Vehicle (SDV) 448
E.2.3 Nonlinear Model of the Naval Postgraduate School AUV Ⅱ 448
F Conversion Factors 453
Bibliography 455
Index 475