《Biofuels and bioenergy processes and technologies》PDF下载

  • 购买积分:12 如何计算积分?
  • 作  者:Sunggyu Lee ; Yatish T. Shah
  • 出 版 社:CRC Press
  • 出版年份:2013
  • ISBN:1420089554
  • 页数:324 页
图书介绍:

1. Introduction to Biofuels and Bioenergy 1

1.1 Definition 1

1.2 Global Energy Outlook 2

1.3 Sustainability 8

1.4 Biomass Feedstocks 9

1.5 Processes and Technologies 12

1.5.1 Feedstock Preparation and Pretreatments 12

1.5.2 Chemical and Biochemical Reactions 13

1.5.3 Heat Transfer Enhancement and Management 13

1.5.4 Downstream Processing of Raw or Intermediate Biofuel Products 13

1.5.5 Energy Integration and Energy Efficiency Enhancement 14

1.5.6 Product Purification and Separation 14

1.6 Environment and Ecology 14

References 15

2. Crop Oils, Biodiesel, and Algae Fuels 17

2.1 Vegetable Oils 17

2.1.1 Background 17

2.1.2 Production and Use of Vegetable Oils 19

2.1.3 Extraction of Vegetable Oils 19

2.1.4 Composition of Vegetable Oils 20

2.1.5 Use of Vegetable Oil as Alternative Diesel Fuel 21

2.1.6 Use of Vegetable Oil in Direct Heating 24

2.1.7 Use of Vegetable Oil for Combined Heat and Power (CHP) 26

2.1.8 Use of Vegetable Oil for Biodiesel Manufacture 26

2.2 Algae Oil Extraction of Straight Vegetable Oil 27

2.2.1 Introduction 27

2.2.2 Microalgae and Growth 28

2.2.3 Algae Harvesting 28

2.2.3.1 Microscreening Harvesting of Algae 29

2.2.3.2 Algae Harvesting by Flocculation 31

2.2.3.3 Algae Harvesting by Centrifugation 31

2.2.4 Algae Oil Extraction 32

2.2.4.1 Expeller Pressing Extraction of Algae Oil 33

2.2.4.2 Ultrasonically Assisted Extraction 34

2.2.4.3 Single-Step Extraction Process by OriginOil, Inc 34

2.2.4.4 Solvent Extraction of Algae Oil 36

2.2.4.5 Supercritical Fluid Extraction of Algae Oil 37

2.2.4.6 Enzymatic Extraction 39

2.2.5 By-Product Utilization 40

2.3 Manufacture of Biodiesel 40

2.3.1 Historical Background of Biodiesel Manufacture 41

2.3.2 Transesterification Process for Biodiesel Manufacture 42

2.3.3 Properties of Biodiesel 44

2.3.3.1 Cetane Rating (CR) 44

2.3.3.2 Calorific Value (CV) or Heating Value (HV) 45

2.3.3.3 General Physical Properties of Biodiesel 46

2.3.3.4 Cold Flow Properties 46

2.3.3.5 Material Compatibility with Biodiesel 47

2.3.4 Prospects and Economics 47

References 48

3.Ethanol from Corn 53

3.1 Fuel Ethanol from Corn 53

3.2 Corn Ethanol as Oxygenated Fuel 59

3.2.1 Industrial Significance of Grain Ethanol 59

3.2.2 Clean Air Act Amendments of 1990 60

3.2.3 Energy Independence and Security Act (EISA) of 2007 61

3.2.4 Net Energy Balance of Corn Ethanol Production 62

3.2.5 Food versus Fuel 63

3.2.6 Corn Ethanol Production Technologies 64

3.2.6.1 Dry Mill Process versus Wet Mill Process 64

3.2.6.2 Ethanol Plant Energy Generation and Supply 64

3.2.6.3 Ethanol Fermentation and Feedstock 65

3.2.6.4 Starch Hydrolysis 66

3.2.6.5 Yeast Fermentation 66

3.2.6.6 Ethanol Purification and Product Separation 67

3.2.6.7 By-Products and Coproducts 68

3.2.6.8 Potential Environmental Issues of Liquid Effluents 68

3.3 Chemistry of Ethanol Fermentation 69

3.3.1 Sugar Content of Biological Materials 69

3.3.2 Conversion of Sugars to Ethanol 70

3.4 Corn-to-Ethanol Process Technology 72

3.4.1 Wet Milling Corn Ethanol Technology 72

3.4.2 Dry Milling Corn Ethanol Process 76

3.4.3 Industrial Cleaning of Ethanol Plant 80

3.5 By-Products/Coproducts of Corn Ethanol 81

3.6 Ethanol as Oxygenated and Renewable Fuel 82

3.7 Ethanol Vehicles 85

3.8 Other Uses of Ethanol 87

References 89

4.Ethanol from Lignocellulose 93

4.1 Lignocellulose and Its Utilization 93

4.1.1 Lignocellulose 93

4.1.2 Cellulose Degradation, Conversion, and Utilization 96

4.2 Lignocellulose Conversion 98

4.2.1 Ethanol 98

4.2.1.1 Ethanol as Chemical and Fuel 98

4.2.1.2 Manufacture of Industrial Alcohol 99

4.2.1.3 Fermentation Ethanol 100

4.2.1.4 Fermentation of Sugars 100

4.2.2 Sources for Fermentable Sugars 103

4.2.2.1 Starches 103

4.2.2.2 Cellulosic Materials 103

4.3 Historical Perspective of Alcohol Fermentation Technology 104

4.4 Agricultural Lignocellulosic Feedstock 107

4.5 Cellulosic Ethanol Technology 110

4.5.1 Acid or Chemical Hydrolysis 110

4.5.1.1 Process Description 111

4.5.2 Enzymatic Hydrolysis 113

4.5.2.1 Enzyme System 113

4.5.3 Enzymatic Processes 115

4.5.3.1 Pretreatment 116

4.5.3.2 Enzyme Production and Inhibition 122

4.5.3.3 Cellulose Hydrolysis 123

4.5.3.4 Fermentation 127

4.5.3.5 Xylose Fermentation 130

4.5.3.6 Ethanol Extraction during Fermentation 132

4.5.4 Lignin Conversion 133

4.5.5 Coproducts of Cellulosic Ethanol Technology 136

4.6 Energy Balance for Ethanol Production from Biomass 136

4.7 Process Economics and Strategic Direction 139

References 140

5.Fast Pyrolysis and Gasification of Biomass 147

5.1 Biomass and Its Utilization 147

5.1.1 Definition of the Term Biomass 147

5.1.2 Renewability and Sustainability of Biomass Feedstock 148

5.1.3 Woody Biomass and Its Utilization 149

5.1.4 Thermal and Thermochemical Conversion of Biomass 150

5.2 Analysis and Composition of Biomass 151

5.2.1 Similarities and Differences between Biomass and Coal as Feedstock 151

5.2.2 Analysis of Biomass 155

5.2.3 Thermochemical Conversion of Biomass 156

5.2.4 Analysis of Biomass Feedstock and Product Compositions 158

5.3 Chemistry of Biomass Gasification 160

5.3.1 Chemical Reactions Taking Place during Biomass Gasification 161

5.3.1.1 Pyrolysis or Thermal Decomposition 164

5.3.1.2 Partial Oxidation 166

5.3.1.3 Steam Gasification 167

5.3.1.4 Boudouard Reaction or Carbon Dioxide Gasification Reaction 169

5.3.1.5 Hydrogasification 170

5.3.1.6 Water Gas Shift Reaction 171

5.3.2 Biosyngas 172

5.3.3 Tar Formation 173

5.4 Fast Pyrolysis of Biomass 175

5.5 Biomass Gasification Processes 186

5.6 Utilization of Biomass Synthesis Gas 196

References 198

6.Conversion of Waste to Biofuels, Bioproducts, and Bioenergy 205

6.1 Introduction 205

6.2 Types of Waste and Their Distributions 206

6.3 Strategies for Waste Management 208

6.4 Waste Preparation and Pretreatment for Conversion 210

6.5 Technologies for Conversion of Waste to Energy and Products 211

6.5.1 Combustion/Incineration 213

6.5.1.1 Grate Incinerators 216

6.5.1.2 Rotary Kilns 216

6.5.1.3 Fluidized Beds 216

6.5.2 Gasification 217

6.5.3 Pyrolysis 220

6.5.4 Plasma Technology 221

6.5.4.1 Plasma Pyrolysis 223

6.5.4.2 Plasma Gasification and Vitrification 223

6.5.5 Liquefaction 226

6.5.5.1 Hydrothermal Liquefaction 228

6.5.6 Supercritical Technology 230

6.5.6.1 Supercritical Water Gasification 231

6.5.6.2 Supercritical Extraction 234

6.5.7 Transesterification 234

6.5.8 Anaerobic Digestion 236

6.5.9 Fermentation 238

6.5.10 Products Upgrading Technologies 241

6.6 Economic and Environmental Issues Related to Waste Conversion 241

6.7 Future of the Waste Industry 242

References 243

7.Mixed Feedstock 251

7.1 Introduction 251

7.2 Advantages and Disadvantages of Mixed Feedstock 255

7.3 Transportation, Storage, and Pretreatment 258

7.3.1 Pretreatment 258

7.3.1.1 Torrefaction 260

7.4 Gasification Technologies 265

7.4.1 Literature Studies 265

7.4.2 Reactor Technology 267

7.4.2.1 Combustion 267

7.4.2.2 Gasification 269

7.4.2.3 Plasma Gasifier 272

7.4.3 Handling of Product Streams 273

7.4.3.1 Syngas Treatment 273

7.4.3.2 Solids Handling 275

7.4.4 Process Configurations for Gasification Technologies 276

7.4.4.1 Combustion 276

7.4.4.2 Gasification and Pyrolysis 277

7.4.4.3 Plasma Technology 279

7.4.5 Industrial Processes 279

7.4.5.1 Nuon Power Buggenum BV-Willem-Alexander Centrale (WAC)——250 MWe IGCC Plant 280

7.4.5.2 250 MWe IGCC Plant of Tampa Electric’s Polk Power Station 280

7.4.5.3 WPC Plasma Process 283

7.5 Liquefaction Technologies 284

7.5.1 Direct Liquefaction 285

7.5.1.1 Hydroliquefaction 286

7.5.2 Pyrolysis 286

7.5.3 Supercritical Extraction 287

7.6 Summary 288

7.7 Future of Mixed Feedstock 291

References 292

Index 303