图书介绍:本书群论方面通过早引入群作用,利用比较少的篇幅讲了Sylow定理,幂零和可解群的知识,并证明了大于等于5元素集合上的交错群为单群。对环论方面,我们将重点放在利用模论来研究环,将和群论类似的内容放入习题中去,环论刻画了半单环,证明了有限群表示理论中的有关定理,还包括了主理想整环上有限生成模的结构定理及应用,分式模有关理论以及代数几何中的准素分解定理和Hilbert基定理。在域的Galois理论中除了传统的5次以上方程无公式解之外,还证明了代数闭域的唯一存在定理,有限域的结构,以及Hilbert零点定理,另外我们还用一章介绍了目前研究比较多的各种代数,包括Hopf代数、李代数、Jordan代数,证明了李代数泛包络代数的PBW定理以及有限单代数的Burnside群理论。最后一章介绍了范畴有关的概念,包括一些基本定理。