《FLUID MECHANICS FOURTH EDITION》PDF下载

  • 购买积分:23 如何计算积分?
  • 作  者:PIJUSH K.KUNDU AND IRA M.COHEN
  • 出 版 社:ELSEVIER
  • 出版年份:2008
  • ISBN:0123813999
  • 页数:872 页
图书介绍:

Chapter 1 Introduction 1

1.Fluid Mechanics 1

2.Units of Measurement 2

3.Solids,Liquids,and Gases 3

4.Continuum Hypothesis 4

5.Transport Phenomena 5

6.Surface Tension 8

7.Fluid Statics 9

8.Classical Thermodynamics 12

9.Perfect Gas 16

10.Static Equilibrium of a Compressible Medium 18

Exercises 22

Literature Cited 24

Supplemental Reading 24

Chapter 2 Cartesian Tensors 25

1.Scalars and Vectors 25

2.Rotation of Axes:Formal Definition of a Vector 26

3.Multiplication of Matrices 29

4.Second-Order Tensor 30

5.Contraction and Multiplication 32

6.Force on a Surface 33

7.Kronecker Delta and Alternating Tensor 36

8.Dot Product 37

9.Cross Product 38

10.Operator ?:Gradient,Divergence,and Curl 38

11.Symmetric and Antisymmetric Tensors 40

12.Eigenvalues and Eigenvectors of a Symmetric Tensor 41

13.Gauss’ Theorem 44

14.Stokes’ Theorem 47

15.Comma Notation 49

16.Boldface vsIndicial Notation 49

Exercises 50

Literature Cited 51

Supplemental Reading 51

Chapter 3 Kinematics 53

1.Introduction 53

2.Lagrangian and Eulerian Specifications 54

3.Eulerian and Lagrangian Descriptions:The Particle Derivative 55

4.Streamline,Path Line,and Streak Line 57

5.Reference Frame and Streamline Pattern 59

6.Linear Strain Rate 60

7.Shear Strain Rate 61

8.Vorticity and Circulation 62

9.Relative Motion near a Point:Principal Axes 64

10.Kinematic Considerations of Parallel Shear Flows 67

11.Kinematic Considerations of Vortex Flows 68

12.One-,Two-,and Three-Dimensional Flows 71

13.The Streamfunction 73

14.Polar Coordinates 75

Exercises 77

Supplemental Reading 79

Chapter 4 Conservation Laws 82

1.Introduction 82

2.Time Derivatives of Volume Integrals 82

3.Conservation of Mass 84

4.Streamfunctions:Revisited and Generalized 87

5.Origin of Forces in Fluid 88

6.Stress at a Point 90

7.Conservation of Momentum 92

8.Momentum Principle for a Fixed Volume 93

9.Angular Momentum Principle for a Fixed Volume 98

10.Constitutive Equation for Newtonian Fluid 100

11.Navier—Stokes Equation 104

12.Rotating Frame 105

13.Mechanical Energy Equation 111

14.First Law of Thermodynamics:Thermal Energy Equation 115

15.Second Law of Thermodynamics:Entropy Production 116

16.Bernoulli Equation 118

17.Applications of Bernoulli’s Equation 122

18.Boussinesq Approximation 124

19.Boundary Conditions 129

Exercises 134

Literature Cited 136

Supplemental Reading 137

Chapter 5 Vorticity Dynamics 139

1.Introduction 139

2.Vortex Lines and Vortex Tubes 140

3.Role of Viscosity in Rotational and Irrotational Vortices 141

4.Kelvin’s Circulation Theorem 144

5.Vorticity Equation in a Nonrotating Frame 149

6.Velocity Induced by a Vortex Filament:Law of Biot and Savart 151

7.Vorticity Equation in a Rotating Frame 152

8.Interaction of Vortices 157

9.Vortex Sheet 161

Exercises 161

Literature Cited 163

Supplemental Reading 163

Chapter 6 Irrotational Flow 165

1.Relevance of Irrotational Flow Theory 165

2.Velocity Potential:Laplace Equation 167

3.Application of Complex Variables 169

4.Flow at a Wall Angle 171

5.Sources and Sinks 173

6.Irrotational Vortex 174

7.Doublet 174

8.Flow pasta Half-Body 175

9.Flow past a Circular Cylinder without Circulation 178

10.Flow past a Circular Cylinder with Circulation 180

11.Forces on a Two-Dimensional Body 184

12.Source near a Wall:Method of Images 189

13.Conformal Mapping 190

14.Flow around an Elliptic Cylinder with Circulation 192

15.Uniqueness of Irrotational Flows 194

16.Numerical Solution of Plane Irrotational Flow 195

17.Axisymmetric Irrotational Flow 201

18.Streamfunction and Velocity Potential for Axisymmetric Flow 203

19.Simple Examples of Axisymmetric Flows 205

20.Flow around a Streamlined Body of Revolution 206

21.Flow around an Arbitrary Body of Revolution 208

22.Concluding Remarks 209

Exercises 209

Literature Cited 212

Supplemental Reading 212

Chapter 7 Gravity Waves 214

1.Introduction 214

2.The Wave Equation 214

3.Wave Parameters 216

4.Surface Gravity Waves 219

5.Some Features of Surface Gravity Waves 223

6.Approximations for Deep and Shallow Water 229

7.Influence of Surface Tension 234

8.Standing Waves 237

9.Group Velocity and Energy Flux 238

10.Group Velocity and Wave Dispersion 242

11.Nonlinear Steepening in a Nondispersive Medium 246

12.Hydraulic Jump 248

13.Finite Amplitude Waves of Unchanging Form in a Dispersive Medium 250

14.Stokes’ Drift 253

15.Waves at a Density Interface between Infinitely Deep Fluids 255

16.Waves in a Finite Layer Overlying an Infinitely Deep Fluid 259

17.Shallow Layer Overlying an Infinitely Deep Fluid 262

18.Equations of Motion for a Continuously Stratified Fluid 263

19.Internal Waves in a Continuously Stratified Fluid 267

20.Dispersion of Internal Waves in a Stratified Fluid 270

21.Energy Considerations of Internal Waves in a Stratified Fluid 272

Exercises 276

Literature Cited 277

Chapter 8 Dynamic Similarity 279

1.Introduction 279

2.Nondimensional Parameters Determined from Differential Equations 280

3.Dimensional Matrix 284

4.Buckingham’s Pi Theorem 285

5.Nondimensional Parameters and Dynamic Similarity 287

6.Comments on Model Testing 290

7.Significance of Common Nondimensional Parameters 292

Exercises 294

Literature Cited 294

Supplemental Reading 294

Chapter 9 Laminar Flow 295

1.Introduction 295

2.Analogy between Heat and Vorticity Diffusion 297

3.Pressure Change Due to Dynamic Effects 297

4.Steady Flow between Parallel Plates 298

5.Steady Flow in a Pipe 302

6.Steady Flow between Concentric Cylinders 303

7.Impulsively Started Plate:Similarity Solutions 306

8.Diffusion of a Vortex Sheet 313

9.Decay of a Line Vortex 315

10.Flow Due to an Oscillating Plate 317

11.High and Low Reynolds Number Flows 320

12.Creeping Flow around a Sphere 322

13.Nonuniformity of Stokes’ Solution and Oseen’s Improvement 327

14.Hele-Shaw Flow 332

15.Final Remarks 334

Exercises 335

Literature Cited 337

Supplemental Reading 337

Chapter 10 Boundary Layers and Related Topics 340

1.Introduction 340

2.Boundary Layer Approximation 340

3.Different Measures of Boundary Layer Thickness 346

4.Boundary Layer on a Flat Plate with a Sink at the Leading Edge:Closed Form Solution 348

5.Boundary Layer on a Flat Plate:Blasius Solution 352

6.von Karman Momentum Integral 362

7.Effect of Pressure Gradient 364

8.Separation 366

9.Description of Flow past a Circular Cylinder 368

10.Description of Flow past a Sphere 375

11.Dynamics of Sports Balls 376

12.Two-Dimensional Jets 381

13.Secondary Flows 388

14.Perturbation Techniques 389

15.An Example of a Regular Perturbation Problem 394

16.An Example of a Singular Perturbation Problem 396

17.Decay of a Laminar Shear Layer 401

Exercises 407

Literature Cited 409

Supplemental Reading 410

Chapter 11 Computational Fluid Dynamics 411

1.Introduction 411

2.Finite Difference Method 413

3.Finite Element Method 418

4.Incompressible Viscous Fluid Flow 426

5.Three Examples 440

6.Concluding Remarks 461

Exercises 463

Literature Cited 464

Chapter 12 Instability 467

1.Introduction 467

2.Method of Normal Modes 469

3.Thermal Instability:The Benard Problem 470

4.Double-Diffusive Instability 482

5.Centrifugal Instability:Taylor Problem 486

6.Kelvin—Helmholtz Instability 493

7.Instability of Continuously Stratified Parallel Flows 500

8.Squire’s Theorem and Orr—Sommerfeld Equation 507

9.Inviscid Stability of Parallel Flows 510

10.Some Results of Parallel Viscous Flows 514

11.Experimental Verification of Boundary Layer Instability 520

12.Comments on Nonlinear Effects 522

13.Transition 523

14.Deterministic Chaos 525

Exercises 533

Literature Cited 535

Chapter 13 Turbulence 537

1.Introduction 537

2.Historical Notes 539

3.Averages 541

4.Correlations and Spectra 543

5.Averaged Equations of Motion 547

6.Kinetic Energy Budget of Mean Flow 554

7.Kinetic Energy Budget of Turbulent Flow 556

8.Turbulence Production and Cascade 559

9.Spectrum of Turbulence in Inertial Subrange 562

10.Wall-Free Shear Flow 564

11.Wall-Bounded Shear Flow 570

12.Eddy Viscosity and Mixing Length 580

13.Coherent Structures in a Wall Layer 584

14.Turbulence in a Stratified Medium 586

15.Taylor’s Theory of Turbulent Dispersion 591

16.Concluding Remarks 598

Exercises 598

Literature Cited 600

Supplemental Reading 601

Chapter 14 Geophysical Fluid Dynamics 603

1.Introduction 603

2.Vertical Variation of Density in Atmosphere and Ocean 605

3.Equations of Motion 607

4.Approximate Equations for a Thin Layer on a Rotating Sphere 610

5.Geostrophic Flow 613

6.Ekman Layer at a Free Surface 617

7.Ekman Layer on a Rigid Surface 622

8.Shallow-Water Equations 625

9.Normal Modes in a Continuously Stratified Layer 628

10.High- and Low-Frequency Regimes in Shallow-Water Equations 634

11.Gravity Waves with Rotation 636

12.Kelvin Wave 639

13.Potential Vorticity Conservation in Shallow-Water Theory 644

14.Internal Waves 647

15.Rossby Wave 657

16.Barotropic Instability 663

17.Baroclinic Instability 665

18.Geostrophic Turbulence 673

Exercises 676

Literature Cited 677

Chapter 15 Aerodynamics 679

1.Introduction 679

2.The Aircraft and Its Controls 680

3.Airfoil Geometry 683

4.Forces on an Airfoil 684

5.Kutta Condition 684

6.Generation of Circulation 687

7.Conformal Transformation for Generating Airfoil Shape 688

8.Lift of Zhukhovsky Airfoil 692

9.Wing of Finite Span 695

10.Lifting Line Theory of Prandtl and Lanchester 697

11.Results for Elliptic Circulation Distribution 701

12.Lift and Drag Characteristics of Airfoils 704

13.Propulsive Mechanisms of Fish and Birds 706

14.Sailing against the Wind 708

Exercises 709

Literature Cited 711

Supplemental Reading 711

Chapter 16 Compressible Flow 713

1.Introduction 713

2.Speed of Sound 717

3.Basic Equations for One-Dimensional Flow 721

4.Stagnation and Sonic Properties 724

5.Area—Velocity Relations in One-Dimensional Isentropic Flow 729

6.Normal Shock Wave 733

7.Operation of Nozzles at Different Back Pressures 741

8.Effects of Friction and Heating in Constant-Area Ducts 747

9.Mach Cone 750

10.Oblique Shock Wave 752

11.Expansion and Compression in Supersonic Flow 756

12.Thin Airfoil Theory in Supersonic Flow 758

Exercises 761

Literature Cited 763

Supplemental Reading 763

Chapter 17 Introduction to Biofluid Mechanics 765

1.Introduction 765

2.The Circulatory System in the Human Body 766

3.Modelling of Flow in Blood Vessels 782

4.Introduction to the Fluid Mechanics of Plants 831

Exercises 837

Acknowledgment 838

Literature Cited 838

Appendix A Some Properties of Common Fluids 841

A1.Useful Conversion Factors 841

A2.Properties of Pure Water at Atmospheric Pressure 842

A3.Properties of Dry Air at Atmospheric Pressure 842

A4.Properties of Standard Atmosphere 843

Appendix B Curvilinear Coordinates 845

B1.Cylindrical Polar Coordinates 845

B2.Plane Polar Coordinates 847

B3.Spherical Polar Coordinates 847

Appendix C Founders of Modern Fluid Dynamics 851

Ludwig Prandtl(1875—1953) 851

Geoffrey Ingram Taylor (1886—1975) 852

Supplemental Reading 853

Appendix D Visual Resources 855

Index 857