Chapter 1 Introduction 1
1.Fluid Mechanics 1
2.Units of Measurement 2
3.Solids,Liquids,and Gases 3
4.Continuum Hypothesis 4
5.Transport Phenomena 5
6.Surface Tension 8
7.Fluid Statics 9
8.Classical Thermodynamics 12
9.Perfect Gas 16
10.Static Equilibrium of a Compressible Medium 18
Exercises 22
Literature Cited 24
Supplemental Reading 24
Chapter 2 Cartesian Tensors 25
1.Scalars and Vectors 25
2.Rotation of Axes:Formal Definition of a Vector 26
3.Multiplication of Matrices 29
4.Second-Order Tensor 30
5.Contraction and Multiplication 32
6.Force on a Surface 33
7.Kronecker Delta and Alternating Tensor 36
8.Dot Product 37
9.Cross Product 38
10.Operator ?:Gradient,Divergence,and Curl 38
11.Symmetric and Antisymmetric Tensors 40
12.Eigenvalues and Eigenvectors of a Symmetric Tensor 41
13.Gauss’ Theorem 44
14.Stokes’ Theorem 47
15.Comma Notation 49
16.Boldface vsIndicial Notation 49
Exercises 50
Literature Cited 51
Supplemental Reading 51
Chapter 3 Kinematics 53
1.Introduction 53
2.Lagrangian and Eulerian Specifications 54
3.Eulerian and Lagrangian Descriptions:The Particle Derivative 55
4.Streamline,Path Line,and Streak Line 57
5.Reference Frame and Streamline Pattern 59
6.Linear Strain Rate 60
7.Shear Strain Rate 61
8.Vorticity and Circulation 62
9.Relative Motion near a Point:Principal Axes 64
10.Kinematic Considerations of Parallel Shear Flows 67
11.Kinematic Considerations of Vortex Flows 68
12.One-,Two-,and Three-Dimensional Flows 71
13.The Streamfunction 73
14.Polar Coordinates 75
Exercises 77
Supplemental Reading 79
Chapter 4 Conservation Laws 82
1.Introduction 82
2.Time Derivatives of Volume Integrals 82
3.Conservation of Mass 84
4.Streamfunctions:Revisited and Generalized 87
5.Origin of Forces in Fluid 88
6.Stress at a Point 90
7.Conservation of Momentum 92
8.Momentum Principle for a Fixed Volume 93
9.Angular Momentum Principle for a Fixed Volume 98
10.Constitutive Equation for Newtonian Fluid 100
11.Navier—Stokes Equation 104
12.Rotating Frame 105
13.Mechanical Energy Equation 111
14.First Law of Thermodynamics:Thermal Energy Equation 115
15.Second Law of Thermodynamics:Entropy Production 116
16.Bernoulli Equation 118
17.Applications of Bernoulli’s Equation 122
18.Boussinesq Approximation 124
19.Boundary Conditions 129
Exercises 134
Literature Cited 136
Supplemental Reading 137
Chapter 5 Vorticity Dynamics 139
1.Introduction 139
2.Vortex Lines and Vortex Tubes 140
3.Role of Viscosity in Rotational and Irrotational Vortices 141
4.Kelvin’s Circulation Theorem 144
5.Vorticity Equation in a Nonrotating Frame 149
6.Velocity Induced by a Vortex Filament:Law of Biot and Savart 151
7.Vorticity Equation in a Rotating Frame 152
8.Interaction of Vortices 157
9.Vortex Sheet 161
Exercises 161
Literature Cited 163
Supplemental Reading 163
Chapter 6 Irrotational Flow 165
1.Relevance of Irrotational Flow Theory 165
2.Velocity Potential:Laplace Equation 167
3.Application of Complex Variables 169
4.Flow at a Wall Angle 171
5.Sources and Sinks 173
6.Irrotational Vortex 174
7.Doublet 174
8.Flow pasta Half-Body 175
9.Flow past a Circular Cylinder without Circulation 178
10.Flow past a Circular Cylinder with Circulation 180
11.Forces on a Two-Dimensional Body 184
12.Source near a Wall:Method of Images 189
13.Conformal Mapping 190
14.Flow around an Elliptic Cylinder with Circulation 192
15.Uniqueness of Irrotational Flows 194
16.Numerical Solution of Plane Irrotational Flow 195
17.Axisymmetric Irrotational Flow 201
18.Streamfunction and Velocity Potential for Axisymmetric Flow 203
19.Simple Examples of Axisymmetric Flows 205
20.Flow around a Streamlined Body of Revolution 206
21.Flow around an Arbitrary Body of Revolution 208
22.Concluding Remarks 209
Exercises 209
Literature Cited 212
Supplemental Reading 212
Chapter 7 Gravity Waves 214
1.Introduction 214
2.The Wave Equation 214
3.Wave Parameters 216
4.Surface Gravity Waves 219
5.Some Features of Surface Gravity Waves 223
6.Approximations for Deep and Shallow Water 229
7.Influence of Surface Tension 234
8.Standing Waves 237
9.Group Velocity and Energy Flux 238
10.Group Velocity and Wave Dispersion 242
11.Nonlinear Steepening in a Nondispersive Medium 246
12.Hydraulic Jump 248
13.Finite Amplitude Waves of Unchanging Form in a Dispersive Medium 250
14.Stokes’ Drift 253
15.Waves at a Density Interface between Infinitely Deep Fluids 255
16.Waves in a Finite Layer Overlying an Infinitely Deep Fluid 259
17.Shallow Layer Overlying an Infinitely Deep Fluid 262
18.Equations of Motion for a Continuously Stratified Fluid 263
19.Internal Waves in a Continuously Stratified Fluid 267
20.Dispersion of Internal Waves in a Stratified Fluid 270
21.Energy Considerations of Internal Waves in a Stratified Fluid 272
Exercises 276
Literature Cited 277
Chapter 8 Dynamic Similarity 279
1.Introduction 279
2.Nondimensional Parameters Determined from Differential Equations 280
3.Dimensional Matrix 284
4.Buckingham’s Pi Theorem 285
5.Nondimensional Parameters and Dynamic Similarity 287
6.Comments on Model Testing 290
7.Significance of Common Nondimensional Parameters 292
Exercises 294
Literature Cited 294
Supplemental Reading 294
Chapter 9 Laminar Flow 295
1.Introduction 295
2.Analogy between Heat and Vorticity Diffusion 297
3.Pressure Change Due to Dynamic Effects 297
4.Steady Flow between Parallel Plates 298
5.Steady Flow in a Pipe 302
6.Steady Flow between Concentric Cylinders 303
7.Impulsively Started Plate:Similarity Solutions 306
8.Diffusion of a Vortex Sheet 313
9.Decay of a Line Vortex 315
10.Flow Due to an Oscillating Plate 317
11.High and Low Reynolds Number Flows 320
12.Creeping Flow around a Sphere 322
13.Nonuniformity of Stokes’ Solution and Oseen’s Improvement 327
14.Hele-Shaw Flow 332
15.Final Remarks 334
Exercises 335
Literature Cited 337
Supplemental Reading 337
Chapter 10 Boundary Layers and Related Topics 340
1.Introduction 340
2.Boundary Layer Approximation 340
3.Different Measures of Boundary Layer Thickness 346
4.Boundary Layer on a Flat Plate with a Sink at the Leading Edge:Closed Form Solution 348
5.Boundary Layer on a Flat Plate:Blasius Solution 352
6.von Karman Momentum Integral 362
7.Effect of Pressure Gradient 364
8.Separation 366
9.Description of Flow past a Circular Cylinder 368
10.Description of Flow past a Sphere 375
11.Dynamics of Sports Balls 376
12.Two-Dimensional Jets 381
13.Secondary Flows 388
14.Perturbation Techniques 389
15.An Example of a Regular Perturbation Problem 394
16.An Example of a Singular Perturbation Problem 396
17.Decay of a Laminar Shear Layer 401
Exercises 407
Literature Cited 409
Supplemental Reading 410
Chapter 11 Computational Fluid Dynamics 411
1.Introduction 411
2.Finite Difference Method 413
3.Finite Element Method 418
4.Incompressible Viscous Fluid Flow 426
5.Three Examples 440
6.Concluding Remarks 461
Exercises 463
Literature Cited 464
Chapter 12 Instability 467
1.Introduction 467
2.Method of Normal Modes 469
3.Thermal Instability:The Benard Problem 470
4.Double-Diffusive Instability 482
5.Centrifugal Instability:Taylor Problem 486
6.Kelvin—Helmholtz Instability 493
7.Instability of Continuously Stratified Parallel Flows 500
8.Squire’s Theorem and Orr—Sommerfeld Equation 507
9.Inviscid Stability of Parallel Flows 510
10.Some Results of Parallel Viscous Flows 514
11.Experimental Verification of Boundary Layer Instability 520
12.Comments on Nonlinear Effects 522
13.Transition 523
14.Deterministic Chaos 525
Exercises 533
Literature Cited 535
Chapter 13 Turbulence 537
1.Introduction 537
2.Historical Notes 539
3.Averages 541
4.Correlations and Spectra 543
5.Averaged Equations of Motion 547
6.Kinetic Energy Budget of Mean Flow 554
7.Kinetic Energy Budget of Turbulent Flow 556
8.Turbulence Production and Cascade 559
9.Spectrum of Turbulence in Inertial Subrange 562
10.Wall-Free Shear Flow 564
11.Wall-Bounded Shear Flow 570
12.Eddy Viscosity and Mixing Length 580
13.Coherent Structures in a Wall Layer 584
14.Turbulence in a Stratified Medium 586
15.Taylor’s Theory of Turbulent Dispersion 591
16.Concluding Remarks 598
Exercises 598
Literature Cited 600
Supplemental Reading 601
Chapter 14 Geophysical Fluid Dynamics 603
1.Introduction 603
2.Vertical Variation of Density in Atmosphere and Ocean 605
3.Equations of Motion 607
4.Approximate Equations for a Thin Layer on a Rotating Sphere 610
5.Geostrophic Flow 613
6.Ekman Layer at a Free Surface 617
7.Ekman Layer on a Rigid Surface 622
8.Shallow-Water Equations 625
9.Normal Modes in a Continuously Stratified Layer 628
10.High- and Low-Frequency Regimes in Shallow-Water Equations 634
11.Gravity Waves with Rotation 636
12.Kelvin Wave 639
13.Potential Vorticity Conservation in Shallow-Water Theory 644
14.Internal Waves 647
15.Rossby Wave 657
16.Barotropic Instability 663
17.Baroclinic Instability 665
18.Geostrophic Turbulence 673
Exercises 676
Literature Cited 677
Chapter 15 Aerodynamics 679
1.Introduction 679
2.The Aircraft and Its Controls 680
3.Airfoil Geometry 683
4.Forces on an Airfoil 684
5.Kutta Condition 684
6.Generation of Circulation 687
7.Conformal Transformation for Generating Airfoil Shape 688
8.Lift of Zhukhovsky Airfoil 692
9.Wing of Finite Span 695
10.Lifting Line Theory of Prandtl and Lanchester 697
11.Results for Elliptic Circulation Distribution 701
12.Lift and Drag Characteristics of Airfoils 704
13.Propulsive Mechanisms of Fish and Birds 706
14.Sailing against the Wind 708
Exercises 709
Literature Cited 711
Supplemental Reading 711
Chapter 16 Compressible Flow 713
1.Introduction 713
2.Speed of Sound 717
3.Basic Equations for One-Dimensional Flow 721
4.Stagnation and Sonic Properties 724
5.Area—Velocity Relations in One-Dimensional Isentropic Flow 729
6.Normal Shock Wave 733
7.Operation of Nozzles at Different Back Pressures 741
8.Effects of Friction and Heating in Constant-Area Ducts 747
9.Mach Cone 750
10.Oblique Shock Wave 752
11.Expansion and Compression in Supersonic Flow 756
12.Thin Airfoil Theory in Supersonic Flow 758
Exercises 761
Literature Cited 763
Supplemental Reading 763
Chapter 17 Introduction to Biofluid Mechanics 765
1.Introduction 765
2.The Circulatory System in the Human Body 766
3.Modelling of Flow in Blood Vessels 782
4.Introduction to the Fluid Mechanics of Plants 831
Exercises 837
Acknowledgment 838
Literature Cited 838
Appendix A Some Properties of Common Fluids 841
A1.Useful Conversion Factors 841
A2.Properties of Pure Water at Atmospheric Pressure 842
A3.Properties of Dry Air at Atmospheric Pressure 842
A4.Properties of Standard Atmosphere 843
Appendix B Curvilinear Coordinates 845
B1.Cylindrical Polar Coordinates 845
B2.Plane Polar Coordinates 847
B3.Spherical Polar Coordinates 847
Appendix C Founders of Modern Fluid Dynamics 851
Ludwig Prandtl(1875—1953) 851
Geoffrey Ingram Taylor (1886—1975) 852
Supplemental Reading 853
Appendix D Visual Resources 855
Index 857