1.The Many-Body Problem in Classical Statistical Mechanics 1
1.1.The Ursell-Mayer Cluster Expansion 1
1.2.Correlation Functions 16
1.3.Cluster Expansion for Long-Range Forces 20
1.4.Plasma Oscillations;Random Phase Approximation 28
1.5.The Self-Consistent Field Method;Vlasov Equation 34
2.Field Theoretic Methods;Linked Cluster Expansion 40
2.1.Second Quantization;the Adiabatic Hypothesis 40
2.2.Perturbation Expansions 47
2.3.Linked Cluster Theorem 67
2.4.Grand Ensemble;Perturbation Theory 77
2.5.Canonical Ensemble;Perturbation Expansion 87
3.Electron Correlation;Quantum Mechanical Treatment 92
3.1.General Survey 92
3.2.The Sawada Hamiltonian Method 107
4.Dielectric Formulation of the Many-Body Problem 127
4.1.Generalized Dielectric Constant 127
4.2.Self-Consistent Field Method 138
4.3.Graphical Analysis of the Dielectric Constant 143
4.4.Corrections to RPA;Exchange Effects 148
4.5.RPA in Real Solids 151
5.Applications to the Theory of Metals 160
5.1.Specific Heat,Susceptibility,and Quasi-Particles 160
5.2.Characteristic Energy Loss 173
5.3.Screening of a Foreign Impurity 176
5.4.Phonons in Metals 179
5.5.Phonon-Mediated Electron Interaction—Mechanism of Superconductivity 189
5.6.Zero Sound 191
5.7.paramagnetic Spin Susceptibility 193
5.8.Other Applications of RPA 198
Author Index 201
Subject Index 203