《FLUID MECHANICS FIFTH EDITION》PDF下载

  • 购买积分:23 如何计算积分?
  • 作  者:
  • 出 版 社:ACADEMIC PRESS
  • 出版年份:2012
  • ISBN:0123821002
  • 页数:891 页
图书介绍:

1. Introduction 1

1.1. Fluid Mechanics 2

1.2. Units of Measurement 3

1.3. Solids, Liquids, and Gases 3

1.4. Continuum Hypothesis 5

1.5. Molecular Transport Phenomena 5

1.6. Surface Tension 8

1.7. Fluid Statics 9

1.8. Classical Thermodynamics 12

First Law of Thermodynamics 13

Equations of State 14

Specific Heats 14

Second Law of Thermodynamics 15

Property Relations 16

Speed of Sound 16

Thermal Expansion Coefficient 16

1.9. Perfect Gas 16

1.10. Stability of Stratified Fluid Media 18

Potential Temperature and Density 19

Scale Height of the Atmosphere 21

1.11. Dimensional Analysis 21

Step 1. Select Variables and Parameters 22

Step 2. Create the Dimensional Matrix 23

Step 3. Determine the Rank of the Dimensional Matrix 23

Step 4. Determine the Number of Dimensionless Groups 24

Step 5. Construct the Dimensionless Groups 24

Step 6. State the Dimensionless Relationship 26

Step 7. Use Physical Reasoning or Additional Knowledge to Simplify the Dimensionlcss Relationship 26

Exercises 30

Literature Cited 36

Supplemental Reading 37

2. Cartesian Tensors 39

2.1. Scalars, Vectors, Tensors, Notation 39

2.2. Rotation of Axes: Formal Definition of a Vector 42

2.3. Multiplication of Matrices 44

2.4. Second-Order Tensors 45

2.5. Contraction and Multiplication 47

2.6. Force on a Surface 48

2.7. Kronecker Delta and Alternating Tensor 50

2.8. Vector, Dot, and Cross Products 51

2.9. Gradient, Divergence, and Curl 52

2.10. Symmetric and Antisymmetric Tensors 55

2.11. Eigenvalues and Eigenvectors of a Symmetric Tensor 56

2.12. Gauss’ Theorem 58

2.13. Stokes’ Theorem 60

2.14. Comma Notation 62

Exercises 62

Literature Cited 64

Supplemental Reading 64

3. Kinematics 65

3.1. Introduction and Coordinate Systems 65

3.2. Particle and Field Descriptions of Fluid Motion 67

3.3. Flow Lines, Fluid Acceleration,and Galilean Transformation 71

3.4. Strain and Rotation Rates 76

Summary 81

3.5. Kinematics of Simple Plane Flows 82

3.6. Reynolds Transport Theorem 85

Exercises 89

Literature Cited 93

Supplemental Reading 93

4. Conservation Laws 95

4.1. Introduction 96

4.2. Conservation of Mass 96

4.3. Stream Functions 99

4.4. Conservation of Momentum 101

4.5. Constitutive Equation for a Newtonian Fluid 111

4.6. Navier-Stokes Momentum Equation 114

4.7. Noninertial Frame of Reference 116

4.8. Conservation of Energy 121

4.9. Special Forms of the Equations 125

Angular Momentum Principle for ary Stationa Control Volume 125

Bernoulli Equations 128

Neglect of Gravity in Constant Density Flows 134

The Boussinesq Approximation 135

Summary 137

4.10. Boundary Conditions 137

Moving and Deforming Boundaries 139

Surface Tension Revisited 139

4.11. Dimensionless Forms of the Equations and Dynamic Similarity 143

Exercises 151

Literature Cited 168

Supplemental Reading 168

5. Vorticity Dynamics 171

5.1. Introduction 171

5.2. Kelvin’s Circulation Theorem 176

5.3. Helmholtz’s Vortex Theorems 179

5.4. Vorticity Equation in a Nonrotating Frame 180

5.5. Velocity Induced by a Vortex Filament: Law of Biot and Savart 181

5.6. Vorticity Equation in a Rotating Frame 183

5.7. Interaction of Vortices 187

5.8. Vortex Sheet 191

Exercises 192

Literature Cited 195

Supplemental Reading 196

6. Ideal Flow 197

6.1. Relevance of Irrotational Constant-Density Flow Theory 198

6.2. Two-Dimensional Stream Function and Velocity Potential 200

6.3. Construction of Elementa Flows in Twory Dimensions 203

6.4. Complex Potential 216

6.5. Forces on a Two-Dimensional Body 219

Blasius Theorem 219

Kutta-Zhukhovsky Lift Theorem 221

6.6. Conformal Mapping 222

6.7. Numerical Solution Techniques in Two Dimensions 225

6.8. Axisymmetric Ideal Flow 231

6.9. Three-Dimensional Potential Flow and Apparent Mass 236

6.10. Concluding Remarks 240

Exercises 241

Literature Cited 251

Supplemental Reading 251

7. Gravity Waves 253

7.1. Introduction 254

7.2. Linear Liquid-Surface Gravity Waves 256

Approximations for Deep and Shallow Water 265

7.3. Influence of Surface Tension 269

7.4. Standing Waves 271

7.5. Group Velocity, Energy Flux, and Dispersion 273

7.6. Nonlinear Waves in Shallow and Deep Water 279

7.7. Waves on a Density Interface 286

7.8. Internal Waves in a Continuously Stratified Fluid 293

Internal Waves in a Stratified Fluid 296

Dispersion of Internal Waves in a Stratified Fluid 299

Energy Considerations for Internal Waves in a Stratified Fluid 302

Exercises 304

Literature Cited 307

8. Laminar Flow 309

8.1. Introduction 309

8.2. Exact Solutions for Steady Incompressible Viscous Flow 312

Steady Flow between Parallel Plates 312

Steady Flow in a Round Tube 315

Steady Flow between Concentric Rotating Cylinders 316

8.3. Elementary Lubrication Theory 318

8.4. Similarity Solutions for Unsteady Incompressible Viscous Flow 326

8.5. Flow Due to an Oscillating Plate 337

8.6. Low Reynolds Number Viscous Flow Past a Sphere 338

8.7. Final Remarks 347

Exercises 347

Literature Cited 359

Supplemental Reading 359

9. Boundary Layers and Related Topics 361

9.1. Introduction 362

9.2. Boundary-Layer Thickness Definitions 367

9.3. Boundary Layer on a Flat Plate:Blasius Solution 369

9.4. Falkner-Skan Similarity Solutions of the Laminar Boundary-Layer Equations 373

9.5. Von Karman Momentum Integral Equation 375

9.6. Thwaites’ Method 377

9.7. Transition, Pressure Gradients,and Boundary-Layer Separation 382

9.8. Flow Past a Circular Cylinder 388

Low Reynolds Numbers 389

Moderate Reynolds Numbers 389

High Reynolds Numbers 392

9.9. Flow Past a Sphere and the Dynamics of Sports Balls 395

Cricket Ball Dynamics 396

Tennis Ball Dynamics 398

Baseball Dynamics 399

9.10. Two-Dimensional Jets 399

9.11. Secondary Flows 407

Exercises 408

Literature Cited 418

Supplemental Reading 419

10. Computational Fluid Dynamics HOWARD H. HU 421

10.1. Introduction 421

10.2. Finite-Difference Method 423

Approximation to Derivatives 423

Discretization and Its Accuracy 425

Convergence, Consistency, and Stability 426

10.3. Finite-Element Method 429

Weak or Variational Form of Partial Differential Equations 429

Galerkin’s Approximation and Finite-Element Interpolations 430

Matrix Equations, Comparison with Finite-Difference Method 431

Element Point of View of the Finite-Element Method 434

10.4. Incompressible Viscous Fluid Flow 436

Convection-Dominated Problems 437

Incompressibility Condition 439

Explicit MacCormack Scheme 440

MAC Scheme 442

O-Scheme 446

Mixed Finite-Element Formulation 447

10.5. Three Examples 449

Explicit MacCormack Scheme for Driven-Cavity Flow Problem 449

Explicit MacCormack Scheme for Flow Over a Square Block 453

Finite-Element Formulation for Flow Over a Cylinder Confined in a Channel 459

10.6. Concluding Remarks 470

Exercises 470

Literature Cited 471

Supplemental Reading 472

11. Instability 473

11.1. Introduction 474

11.2. Method of Normal Modes 475

11.3. Kelvin-Helmholtz Instability 477

11.4. Thermal Instability: The Benard Problem 484

11.5. Double-Diffusive Instability 492

11.6. Centrifugal Instability: Taylor Problem 496

11.7. Instability of Continuously Stratified Parallel Flows 502

11.8. Squire’s Theorem and the Orr-Sommerfeld Equation 508

11.9. Inviscid Stability of Parallel Flows 511

11.10. Results for Parallel and Nearly Parallel Viscous Flows 515

Two-Stream Shear Layer 515

Plane Poiseuille Flow 516

Plane Couette Flow 517

Pipe Flow 517

Boundary Layers with Pressure Gradients 517

11.11. Experimental Verification of Boundary-Layer Instability 520

11.12. Comments on Nonlinear Effects 522

11.13. Transition 523

11.14. Deterministic Chaos 524

Closure 531

Exercises 532

Literature Cited 539

12. Turbulence 541

12.1. Introduction 542

12.2. Historical Notes 544

12.3. Nomenclature and Statistics for Turbulent Flow 545

12.4. Correlations and Spectra 549

12.5. Averaged Equations of Motion 554

12.6. Homogeneous Isotropic Turbulence 560

12.7. Turbulent Energy Cascade and 564

Spectrum 564

12.8. Free Turbulent Shear Flows 571

12.9. Wall-Bounded Turbulent Shear Flows 581

Inner Layer: Law of the Wall 584

Outer Layer: Velocity Defect Law 585

Overlap Layer: Logarithmic Law 585

Rough Surfaces 590

12.10. Turbulence Modeling 591

A Mixing Length Model 593

One-Equation Models 595

Two-Equation Models 595

12.11. Turbulence in a Stratified Medium 596

The Richardson Numbers 597

Monin-Obukhov Length 598

Spectrum of Temperature Fluctuations 600

12.12. Taylor’s Theory of Turbulent Dispersion 601

Rate of Dispersion of a Single Particle 602

Random Walk 605

Behavior of a Smoke Plume in the Wind 606

Turbulent Diffusivity 607

12.13. Concluding Remarks 607

Exercises 608

Literature Cited 618

Supplemental Reading 620

13. Geophysical Fluid Dynamics 621

13.1. Introduction 622

13.2. Vertical Variation of Density in the Atmosphere and Ocean 623

13.3. Equations of Motion 625

13.4. Approximate Equations for a Thin Layer on a Rotating Sphere 628

f-Plane Model 630

β-Plane Model 630

13.5. Geostrophic Flow 630

Thermal Wind 632

Taylor-Proudman Theorem 632

13.6. Ekman Layer at a Free Surface 633

Explanation in Terms of Vortex Tilting 637

13.7. Ekman Layer on a Rigid Surface 639

13.8. Shallow-Water Equations 642

13.9. Normal Modes in a Continuously Stratified Layer 644

Boundary Conditions on ?n 646

Vertical Mode Solution for Uniform N 646

Summary 649

13.10. High- and Low-Frequency Regimes in Shallow-Water Equations 649

13.11. Gravity Waves with Rotation 651

Particle Orbit 652

Inertial Motion 653

13.12. Kelvin Wave 654

13.13. Potential Vorticity Conservation in Shallow-Water Theory 658

13.14. Internal Waves 662

WKB Solution 664

Particle Orbit 666

Discussion of the Dispersion Relation 668

Lee Wave 670

13.15. Rossby Wave 671

Quasi-Geostrophic Vorticity Equation 671

Dispersion Relation 673

13.16. Barotropic Instability 676

13.17. Baroclinic Instability 678

Perturbation Vorticity Equation 679

Wave Solution 681

Instability Criterion 682

Energetics 684

13.18. Geostrophic Turbulence 685

Exercises 688

Literature Cited 690

Supplemental Reading 690

14. Aerodynamics 691

14.1. Introduction 692

14.2. Aircraft Terminology 692

Control Surfaces 693

14.3. Characteristics of Airfoil Sections 696

Historical Notes 701

14.4. Conformal Transformation for Generating Airfoil Shapes 702

14.5. Lift of a Zhukhovsky Airfoil 706

14.6. Elementary Lifting Line Theory for Wings of Finite Span 708

Lanchester Versus Prandtl 716

14.7. Lift and Drag Characteristics of Airfoils 717

14.8. Propulsive Mechanisms of Fish and Birds 719

14.9. Sailing against the Wind 721

Exercises 722

Literature Cited 728

Supplemental Reading 728

15. Compressible Flow 729

15.1. Introduction 730

Perfect Gas Thermodynamic Relations 731

15.2. Acoustics 732

15.3. Basic Equations for One-Dimensional Flow 736

15.4. Reference Properties in Compressible Flow 738

15.5. Area-Velocity Relationship in One-Dimensional Isentropic Flow 740

15.6. Normal Shock Waves 748

Stationary Normal Shock Wave in a Moving Medium 748

Moving Normal Shock Wave in a Stationary Medium 752

Normal Shock Structure 753

15.7. Operation of Nozzles at Different Back Pressures 755

Convergent Nozzle 755

Convergent-Divergent Nozzle 757

15.8. Effects of Friction and Heating in Constant-Area Ducts 761

Effect of Friction 763

Effect of Heat Transfer 764

15.9. Pressure Waves in Planar Compressible Flow 765

15.10. Thin Airfoil Theory in Supersonic Flow 773

Exercises 775

Literature Cited 778

Supplemental Reading 778

16. Introduction to Biofluid Mechanics PORTONOVO S. AYYASWAMY 779

16.1. Introduction 779

16.2. The Circulatory System in the Human Body 780

The Heart as a Pump 785

Nature of Blood 788

Nature of Blood Vessels 793

16.3. Modeling of Flow in Blood Vessels 796

Steady Blood Flow Theory 797

Pulsatile Blood Flow Theory 805

Blood Vessel Bifurcation: An Application of Poiseuille’s Formula and Murray’s Law 820

Flow in a Rigid-Walled Curved Tube 825

Flow in Collapsible Tubes 831

Laminar Flow of a Casson Fluid in a Rigid-Walled Tube 839

Pulmonary Circulation 841

The Pressure Pulse Curve in the Right Ventricle 842

Effect of Pulmonary Arterial Pressure on Pulmonary Resistance 843

16.4. Introduction to the Fluid Mechanics of Plants 844

Exercises 849

Acknowledgment 850

Literature Cited 851

Supplemental Reading 852

Appendix A 853

Appendix B 857

Appendix C 869

Appendix D 873

Index 875