1 Introductionto SurfaceTexture Measurement 1
RichardLeach 1
1.1 Surface Texture Measurement 1
1.2 Surface Profile and Areal Measurement 2
1.3 Areal Surface Texture Measurement 2
1.4 Surface Texture Standards and GPS 3
1.4.1 Profile Standards 3
1.4.2 Areal Specification Standards 4
1.5 InstrumentTypes in the ISO 25178 Series 5
1.5.1 The Stylus Instrument 7
1.5.2 Scanning Probe Microscopes 8
1.5.3 Scanning Electron Microscopes 9
1.5.4 Optical Instrument Types 9
1.6 Considerations When Choosing a Method 10
Acknowledgements 11
References 11
2 Some Common Terms and Definitions 15
RichardLeach 15
2.1 Introduction 15
2.2 The Principal Aberrations 15
2.3 Obiective Lenses 17
2.4 Magnification and Numerical Aperture 18
2.5 Spatial Resolution 19
2.6 Optical Spot Size 20
2.7 Field of View 21
2.8 Depth of Field and Depth ofFocus 21
2.9 Interference Objectives 22
Acknowledgements 22
References 22
3 Limitations of Optical 3D Sensors 23
Gerd H?usler,Svenja Ettl 23
3.1 Introduction:What Is This Chapter About? 23
3.2 The Canonical Sensor 24
3.3 Optically Rough and Smooth Surfaces 25
3.4 Type Ⅰ Sensors:Triangulation 27
3.5 Type Ⅱ and Type Ⅲ Sensors:Interferometry 33
3.6 Type Ⅳ Sensors:Deflectometry 38
3.7 Only Four Sensor Principles? 42
3.8 Conclusion and Open Questions 43
References 45
4 Calibration of Optical Surface Topography Measuring Instruments 49
Richard Leach,Claudiu Giusca 49
4.1 Introduction to Calibration and Traceabilitv 49
4.2 Calibration of Surface Topography Measuring Instruments 50
4.3 Can an Optical Instrument Be Calibrated? 51
4.4 Types ofMaterial Measure 52
4.5 Calibration of Instrument Scales 54
4.5.1 Noise 56
4.5.2 Residual F1atness 58
4.5.3 Amplification,Linearity and Squareness of the Scales 59
4.5.4 Resolution 63
4.6 Relationship between the Calibration,Adjustment and Measurement Uncertainty 66
4.7 Summary 67
Acknowledgements 68
References 69
5 Chromatic Confocal Microscopy 71
Francois Blateyron 71
5.1 Basic Theory 71
5.1.1 Confocal Setting 72
5.1.2 Axial Chromatic Dispersion 73
5.1.3 Spectral Decoding 75
5.1.4 Height Detection 76
5.1.5 Metrological Characteristics 77
5.1.5.1 Spot Size 77
5.2 Instrumentation 78
5.2.1 Lateral Scanning Configurations 78
5.2.1.1 Profile Measurement 78
5.2.1.2 Areal Measurement 80
5.2.2 Optoelectronic Controller 81
5.2.3 Optical Hcad 83
5.2.4 Light Source 84
5.2.5 Chromatic Obiective 85
5.2.6 Spectrometer 86
5.2.7 Optical Fibre Cord 87
5.3 Instrument Use and Good Practice 87
5.3.1 Calibration 87
5.3.1.1 Calibration ofDark Level 87
5.3.1.2 Linearisation ofthe Response Curve 88
5.3.1.3 Calibration of the Height Amplification Coefficient 90
5.3.1.4 Calibration ofthe Lateral Amplification Coefficient 90
5.3.1.5 Calibration ofthe Hysteresis in Bi-directional Measurement 90
5.3.2 Preparation for Measurement 91
5.3.3 Pre-processing 91
5.4 Limitations of the Technique 91
5.4.1 Local Slopes 91
5.4.2 Scanning Speed 94
5.4.3 Light Intensity 94
5.4.4 Non-measured Points 94
5.4.5 Outliers 95
5.4.6 Interference 96
5.4.7 Ghost Foci 96
5.5 Extensions of the Basic Principles 97
5.5.1 Thickness Measurement 97
5.5.2 Line and Field Sensors 99
5.5.3 Absolute Reference 99
5.6 Case Studies 100
Acknowledgements 105
References 105
6 Point Autofocus Instruments 107
Katsuhiro Miura,Atsuko Nose 107
6.1 Basic Theory 107
6.2 Instrumentation 112
6.3 Instrument Use and Good Practice 114
6.3.1 Comparison with Roughness Material Measures 114
6.3.2 Three-Dimensional Measurement of Grinding Wheel SurfaceTopography 117
6.4 Limitations of PAI 118
6.4.1 Lateral Resolution 118
6.4.2 Vertical Resolution 119
6.4.3 The Maximum Acceptable Local Surface Slope 120
6.5 Extensions of the Basic Principles 122
6.6 Case Studies 126
6.7 Conclusion 128
References 128
7 Focus Variation Instruments 131
Franz Helmli 131
7.1 Introduction 131
7.2 Basic Theory 131
7.2.1 How Does It Work? 131
7.2.2 Acquisition of Image Data 133
7.2.3 Measurement of 3D Information 133
7.2.4 Post-processing 137
7.2.5 Handling of Invalid Points 139
7.3 Difference to Other Techniques 139
7.3.1 Difference to Imaging Confocal Microscopy 140
7.3.2 Difference to Point Auto Focusing Techniques 140
7.4 Instrumentation 140
7.4.1 Optical System 141
7.4.2 CCD Sensor 141
7.4.3 Light Source 142
7.4.4 Microscope Objective 144
7.4.5 Driving Unit 144
7.4.6 Practical Instrument Realisation 145
7.5 Instrument Use and Good Practice 148
7.6 Limitations of the Technology 153
7.6.1 Translucent Materials 153
7.6.2 Measurable Surfaces 153
7.7 Extensions of the Basic Principles 154
7.7.1 Repeatability Information 154
7.7.2 High Radiometric Data Acquisition 155
7.7.3 2D Alignment 156
7.7.4 3D Alignment 157
7.8 Case Studies 160
7.8.1 Surface Texture Measurement of Worn Metal Parts 160
7.8.2 Form Measurement of Complex Tap Parameters 162
7.9 Conclusion 166
Acknowledgements 166
References 166
8 Phase Shifting Interferometry 167
Peterde Groot 167
8.1 Concept and Overview 167
8.2 Principles of Surface Measurement Interferometry 168
8.3 Phase Shifting Method 171
8.4 Phase Unwrapping 173
8.5 Phase Shifting Error Analysis 174
8.6 Interferometer Design 175
8.7 Lateral Resolution 178
8.8 Focus 181
8.9 Light Sources 182
8.10 Calibration 183
8.11 Examples of PSI Measurement 184
References 185
9 Coherenee Scanning Interferometry 187
Peterde Groot 187
9.1 Concept and Overview 187
9.2 Terminology 189
9.3 Typical Configurations of CSI 190
9.4 Signal Formation 191
9.5 Signal Processing 197
9.6 Foundation Metrics and Height Calibration for CSI 201
9.7 Dissimilar Materials 201
9.8 Vibrational Sensitivity 202
9.9 Transparent Films 203
9.10 Examples 205
9.11 Conclusion 206
References 206
10 Digital Holographic Microscopy 209
Tristan Colomb,Jonas Kühn 209
10.1 Introduction 209
10.2 Basic Theory 210
10.2.1 Acquisition 211
10.2.2 Reconstruction 211
10.3 Instrumentation 214
10.3.1 Light Source 215
10.3.2 Digital Camera 216
10.3.3 Microscope Obiective 216
10.3.4 Optical Path Retarder 216
10.4 Instrument Use and Good Practice 217
10.4.1 Digital Focusing 217
10.4.2 DHM Parameters 218
10.4.3 Automatic Working Distance in Reflection DHM 218
10.4.4 Sample Preparation and Immersion Liquids 219
10.5 Limitations of DHM 219
10.5.1 Parasitic Interferences and Statistical Noise 219
10.5.2 Height Measurement Range 220
10.5.3 Sample Limitation 220
10.6 Extensions of the Basic DHM Principles 220
10.6.1 Multi-wavelength DHM 221
10.6.1.1 Extended Measurement Range 221
10.6.1.2 Mapping 222
10.6.2 Stroboscopic Measurement 222
10.6.3 DHM Reflectometry 223
10.6.4 Infinite Focus 224
10.6.5 Applications of DHM 224
10.6.5.1 Topography and Defect Detection 224
10.6.5.2 Roughness 225
10.6.5.3 Micro-optics Characterization 228
10.6.5.4 MEMS and MOEMS 229
10.6.5.5 Semi-transparent Micro-structures 230
10.7 Conclusions 232
References 232
11 Imaong Confocal Microscopy 237
Roger Artigas 237
11.1 Basic Theory 237
11.1.1 Introduction to Imaging Confocal Microscopes 237
11.1.2 Working Principle ofan Imaging Confocal Microscope 238
11.1.3 Metrological Algorithm 241
11.1.4 Image Formation of a Confocal Microscope 242
11.1.4.1 General Description ofa Scanning Microscope 242
11.1.4.2 Point Spread Function for the Limiting Case of an Infinitesimally Small Pinhole 245
11.1.4.3 Pinhole Size Effect 246
11.2 Instrumentation 249
11.2.1 Types of Confocal Microscopes 250
11.2.1.1 Laser Scanning Confocal Microscope Configuration 250
11.2.1.2 Disc Scanning Confocal Microscope Configuration 253
11.2.1.3 Programmable Array Scanning Confocal Microscope Configuration 256
11.2.2 Objectives for Confocal Microscopy 259
11.2.3 Vertical Scanning 262
11.2.3.1 Motorised Stages with Optical Linear Encoders 262
11.2.3.2 Piezoelectric Stages 263
11.2.3.3 Comparison between Motorised and Piezoelectric Scanning Stages 264
11.3 Instrument Use and Good Practice 265
11.3.1 Location of an Imaging Confocal Microscope 265
11.3.2 Seuing Up the Sample 265
11.3.3 Setting the Right Scanning Parameters 265
11.3.4 Simultaneous Detection of Confocal and Bright Field Images 267
11.3.5 Sampling 268
11.3.6 Low Magnification against Stitching 269
11.4 Limitations of Imaging Confocal Microscopy 270
11.4.1 Maximum Detectable Slope on Smooth Surfaces 270
11.4.2 Noise and Resolution in Imaging Confocal Microscopes 272
11.4.3 Errors in Imaging Confocal Microscopes 274
11.4.3.1 0bjective Flatness Error 274
11.4.3.2 Calibration of the F1atness Error 275
11.4.3.3 Measurements on Thin Transparent Materials 276
11.4.4 Lateral Resolution 276
11.5 Measurement of Thin and Thick Film with Imaging Confocal Microscopy 278
11.5.1 Introduction 278
11.5.2 Thick Films 278
11.5.3 Thin Films 280
11.6 Case Study:Roughness Prediction on Steel Plates 283
References 285
12 Light Scattering Methods 287
Theodore V.Vorburger,Richard Silver,RainerBrodmann,BorisBrodmann,J?rgSeewig12.1 Introduction 287
12.2 Basic Theory 289
12.3 Instrumentation and Case Studies 295
12.3.1 Early Developments 295
12.3.2 Recent Developments in Instrumentation for Mechanical Engineering Manufacture 298
12.3.3 Recent Developments in Instrumentation for Semiconductor Manufacture(Optical Critical Dimension) 302
12.4 Instrument Use and Good Practice 308
12.4.1 SEMI MF 1048-1 109(2009) Test Method for Measuring theEffectiveSurfaceRoughness ofOpticalComponents by Total Integrated Scattering 308
12.4.2 SEMI ME1392-1 109)2009)Guide for Angle-Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces 310
12.4.3 IS0101 10-8:2010 Optics and Photonics—Preparation of DrawingsforOpticalElementsandSystems—Part 8:Surface Texture 311
12.4.4 Standards for Gloss Measurement 312
12.4.5 VDA Guideline 2009,Geometrische Produktspezifikation Oberfl?chenbeschaffenheit Winkelaufgel?ste Streulichtmesstech-nik Definition,Kenngr??en und Anwendung(Light Scattering Measurement Technique) 312
12.5 Limitations ofthe Technique 314
12.6 Extensions of the Basic Principles 314
Acknowledgements 315
References 315
Index 319