Part Ⅰ.CONDITIONS FAVORING LOCALIZATION OF EFFECTIVE MOMENTS 3
1.Formation of Local Magnetic Moments in Metals:Experimental Results and Phenomenology&Dieter K.Wohlleben and Bryan R.Coles 3
Ⅰ.Introduction 3
Ⅱ.Experimental Observables in the Local Moment Problem 7
Ⅲ.General Features Revealed by Experiment 17
Ⅳ.Solid Solutions of 3d Elements in Simple Hosts 31
Ⅴ.Transition Metals Containing 3d Solutes 34
Ⅵ.Local Moment Formation in Rare Earth Metals 37
References 51
2.Formation of Local Magnetic Moments:Hartree-Fock Theory&A.Blandin 57
Ⅰ.Introduction 58
Ⅱ.Friedel's Approach:Resonance Scattering and Virtual Bound States 59
Ⅲ.Anderson's Approach 64
Ⅳ.Discussion of the Hartree-Fock Solutions 70
Ⅴ.The Antiferromagnetic Coupling between Localized and Conduction Electrons 73
Ⅵ.Transition Impurities in Transition Metals 78
Ⅶ.Conclusions 86
References 87
3.Spin Fluctuations around Impurities:Magnetic and Non magnetic Cases&D.L.Mills,M.T.Béal-Monod,and P.Lederer 89
Ⅰ.Introduction 89
Ⅱ.Theory of Local Spin Fluctuations Associated with Paramagnetic Impurities in Metals:Mean Field Description 92
Ⅲ.Renormalized Theories of Local Spin Fluctuations:Nonmagnetic and Magnetic Cases 100
Ⅳ.The Effect of Local Spi Fluctuations on the Properties of Dilute Alloys 109
References 116
Part Ⅱ.THE s-d MODEL 121
4.The s-d Model and the Kondo Effect:Thermal and Transport Properties&Melvin D.Daybell 121
Ⅰ.Introduction 121
Ⅱ.Thermal and Transport Properties 125
Ⅲ.Interactions 140
Ⅳ.Review Articles 144
References 144
5.The s-d Model and the Kondo Effect:Magnetic Hyperfine-Interaction Studies&Albert Narath 149
Ⅰ.Introduction 149
Ⅱ.Theory of Magnetic Hyperfine Interactions in Dilute Alloys 150
Ⅲ.Impurity Magnetization Studies 157
Ⅳ.Dynamic Response Studies 174
Ⅴ.Concluding Remarks 179
References 180
6.Perturbative,Scattering,and Green's Function Theories of the S-d Model&W.Brenig and J.Zittartz 185
Ⅰ.Introduction 185
Ⅱ.Hamiltonian and Green's Functions 186
Ⅲ.Dispersion Theory 189
Ⅳ.Equation of Motion Method 192
Ⅴ.Properties of the Solution 198
Ⅵ.Thermal Properties 200
Ⅶ.Electrical Conductivity 205
Ⅷ.Magnetic Field Effects 205
Appendix A.Diagrammatic Methods 210
Appendix B.Electronic Susceptibility 213
References 214
7.Asymptotically Exact Methods in the Kondo Problem&P.W.Anderson and G.Yuval 217
Ⅰ.Introduction 217
Ⅱ.The Kondo Problem:A Discrete Path-Integral Approach 219
Ⅲ.Eliminating the Fermi Gas 221
Ⅳ.The Method of Schotte and Schotte 224
Ⅴ.Summing Up over the Paths 225
Ⅵ.Finite Temperatures 227
Ⅶ.Numerical Results 228
Ⅷ.The Scaling Method 230
Ⅸ.The Kondo Temperature 232
Ⅹ.Physical Implications 233
Ⅺ."Renormalization Group"Methods in the Kondo Problem 233
References 235
8.Functional Integral Methods in the Magnetic Impurity Problem&D.R.Hamann and J.R.Schrieffer 237
References 252
9.The Ground State of the s-d Model&Kei Yosida and Akio Yoshimori 253
Ⅰ.Introduction 253
Ⅱ.Perturbaion Theoretic Approach for the Singlet Ground State 258
Ⅲ.Bound State for the Anisotropic Exchange Interaction 264
Ⅳ.Charge,Spin Polarization,and Spin Correlation Densities 270
Ⅴ.Bound State in the Presence of Magnetic Field 274
Ⅵ.Local Electron Distributions and Magnetoresistance 278
Ⅶ.Concluding Remarks 284
References 285
Part Ⅲ.MAGNETIC MOMENT EFFECTS IN SUPERCONDUCTORS 289
10.Paramagnetic Impurities in Superconductors&M.Brian Maple 289
Ⅰ.Introduction 289
Ⅱ.Long-Lived Local Moments in Superconductors 291
Ⅲ.The Effect of Nonmagnetic Resonant States on Superconductivity 308
Ⅳ.The Effect of Localized Spin Fluctuations on Superconductivity 313
Ⅴ.Magnetic-Nonmagnetic Transitions of Impurities in Superconductors 318
References 323
11.Recent Work on Ferromagnetic Superconductors&?.Fischer and M.Peter 327
Ⅰ.Introduction 327
Ⅱ.Magnetic Ordering in a Superconductor.The Low-Concentration Limit 328
Ⅲ.Coexistence in More Concentrated Systems.The Case of Ce1-xGdxRu2 336
Ⅳ.Superconductor in a Molecular Field.Compensation of the Exchange Field by an External Field 343
Ⅴ.Final Remarks 350
References 351
12.Recent Theoretical Work on Magnetic Impurities in Superconductors&E.Müller-Hartmann 353
Ⅰ.Introduction 353
Ⅱ.Model and Green's Functions 355
Ⅲ.Nagoaka Approximation 358
Ⅳ.Solution of Hammann's Equation 361
Ⅴ.Results at Low Impurity Concentration 369
Ⅵ.Treatment of Finite Impurity Concentrations 375
Ⅶ.Conclusion 380
References 381
Author Index 383
Subject Index 395