Chapter 1 Introduction 1
1.1 Aluminum 4
1.2 Magnesium and Beryllium 6
1.3 Titanium 7
1.4 High Strength Steels 8
1.5 Superalloys 8
1.6 Composites 9
1.7 Adhesive Bonding and Integrally Cocured Structure 10
1.8 Metal and Ceramic Matrix Composites 11
1.9 Assembly 12
Summary 12
References 13
Chapter 2 Aluminum 15
2.1 Metallurgical Considerations 17
2.2 Aluminum Alloy Designation 23
2.3 Aluminum Alloys 25
2.4 Melting and Primary Fabrication 31
2.4.1 Rolling Plate and Sheet 33
2.4.2 Extrusion 37
2.5 Heat Treating 37
2.5.1 Solution Heat Treating and Aging 37
2.5.2 Annealing 42
2.6 Forging 43
2.7 Forming 46
2.7.1 Blanking and Piercing 47
2.7.2 Brake Forming 48
2.7.3 Deep Drawing 49
2.7.4 Stretch Forming 50
2.7.5 Rubber Pad Forming 51
2.7.6 Superplastic Forming 51
2.8 Casting 57
2.8.1 Sand Casting 60
2.8.2 Plaster and Shell Molding 62
2.8.3 Permanent Mold Casting 63
2.8.4 Die Casting 64
2.8.5 Investment Casting 64
2.8.6 Evaporative Pattern Casting 64
2.8.7 Casting Heat Treatment 65
2.8.8 Casting Properties 65
2.9 Machining 66
2.9.1 High Speed Machining 68
2.9.2 Chemical Milling 76
2.10 Joining 76
2.11 Welding 77
2.11.1 Gas Metal and Gas Tungsten Arc Welding 78
2.11.2 Plasma Arc Welding 80
2.11.3 Laser Welding 81
2.11.4 Resistance Welding 82
2.11.5 Friction Stir Welding 83
2.12 Chemical Finishing 88
Summary 89
Recommended Reading 90
References 90
Chapter 3 Magnesium and Beryllium 93
MAGNESIUM 95
3.1 Magnesium Metallurgical Considerations 95
3.2 Magnesium Alloys 97
3.2.1 Wrought Magnesium Alloys 97
3.2.2 Magnesium Casting Alloys 99
3.3 Magnesium Fabrication 103
3.3.1 Magnesium Forming 103
3.3.2 Magnesium Sand Casting 104
3.3.3 Magnesium Heat Treating 106
3.3.4 Magnesium Machining 107
3.3.5 Magnesium Joining 107
3.4 Magnesium Corrosion Protection 108
BERYLLIUM 109
3.5 Beryllium Metallurgical Considerations 109
3.6 Beryllium Alloys 110
3.7 Beryllium Powder Metallurgy 111
3.8 Beryllium Fabrication 114
3.8.1 Beryllium Forming 114
3.8.2 Beryllium Machining 115
3.8.3 Beryllium Joining 116
3.9 Aluminum-Beryllium Alloys 116
Summary 116
References 118
Chapter 4 Titanium 119
4.1 Metallurgical Considerations 120
4.2 Titanium Alloys 126
4.2.1 Commercially Pure Titanium 126
4.2.2 Alpha and Near-Alpha Alloys 127
4.2.3 Alpha-Beta Alloys 128
4.2.4 Beta Alloys 131
4.3 Melting and Primary Fabrication 132
4.4 Forging 137
4.5 Directed Metal Deposition 140
4.6 Forming 143
4.7 Superplastic Forming 145
4.8 Heat Treating 150
4.8.1 Stress Relief 151
4.8.2 Annealing 152
4.8.3 Solution Treating and Aging 152
4.9 Investment Casting 154
4.10 Machining 158
4.11 Joining 165
4.12 Welding 165
4.13 Brazing 170
Summary 171
Recommended Reading 172
References 173
Chapter 5 High Strength Steels 175
5.1 Metallurgical Considerations 176
5.2 Medium Carbon Low Alloy Steels 182
5.3 Fabrication of Medium Carbon Low Alloy Steels 186
5.4 Heat Treatment of Medium Carbon Low Alloy Steels 191
5.5 High Fracture Toughness Steels 198
5.6 Maraging Steels 200
5.7 Precipitation Hardening Stainless Steels 202
Summary 207
Recommended Reading 207
References 208
Chapter 6 Superalloys 211
6.1 Metallurgical Considerations 213
6.2 Commercial Superalloys 219
6.2.1 Nickel Based Superalloys 221
6.2.2 Iron-Nickel Based Superalloys 224
6.2.3 Cobalt Based Superalloys 225
6.3 Melting and Primary Fabrication 225
6.4 Powder Metallurgy 228
6.4.1 Powder Metallurgy Forged Alloys 228
6.4.2 Mechanical Alloying 230
6.5 Forging 232
6.6 Forming 236
6.7 Investment casting 238
6.7.1 Polycrystalline Casting 239
6.7.2 Directional Solidification (DS) Casting 240
6.7.3 Single Crystal (SC) Casting 242
6.8 Heat Treatment 243
6.8.1 Solution Strengthened Superalloys 243
6.8.2 Precipitation Strengthened Nickel Base Superalloys 244
6.8.3 Precipitation Strengthened Iron-Nickel Base Superalloys 246
6.8.4 Cast Superalloy Heat Treatment 247
6.9 Machining 248
6.9.1 Turning 251
6.9.2 Milling 252
6.9.3 Grinding 254
6.10 Joining 256
6.10.1 Welding 256
6.10.2 Brazing 260
6.10.3 Transient Liquid Phase (TLP) Bonding 263
6.11 Coating Technology 264
6.11.1 Diffusion Coatings 264
6.11.2 Overlay Coatings 265
6.11.3 Thermal Barrier Coatings 266
Summary 266
Recommended Reading 270
References 270
Chapter 7 Polymer Matrix Composites 273
7.1 Materials 276
7.1.1 Fibers 277
7.1.2 Matrices 280
7.1.3 Product Forms 282
7.2 Fabrication Processes 286
7.3 Cure Tooling 286
7.3.1 Tooling Considerations 286
7.4 Ply Collation 291
7.4.1 Manual Lay-up 291
7.4.2 Flat Ply Collation and Vacuum Forming 294
7.5 Automated Tape Laying 295
7.6 Filament Winding 298
7.7 Fiber Placement 304
7.8 Vacuum Bagging 307
7.9 Curing 311
7.9.1 Curing of Epoxy Composites 313
7.9.2 Theory of Void Formation 314
7.9.3 Hydrostatic Resin Pressure 318
7.9.4 Resin and Prepreg Variables 322
7.9.5 Condensation Curing Systems 323
7.9.6 Residual Curing Stresses 324
7.10 Liquid Molding 327
7.11 Preform Technology 328
7.11.1 Fibers 329
7.11.2 Woven Fabrics 330
7.11.3 Multiaxial Warp Knits 331
7.11.4 Stitching 331
7.11.5 Braiding 333
7.11.6 Preform Handling 334
7.12 Resin Injection 336
7.12.1 RTM Curing 338
7.12.2 RTM Tooling 338
7.13 Vacuum Assisted Resin Transfer Molding 339
7.14 Pultrusion 341
7.15 Thermoplastic Composites 343
7.15.1 Thermoplastic Consolidation 345
7.15.2 Thermoforming 351
7.15.3 Thermoplastic Joining 355
7.16 Trimming and Machining Operations 361
Summary 364
Recommended Reading 366
References 366
Chapter 8 Adhesive Bonding and Integrally Cocured Structure 369
8.1 Advantages of Adhesive Bonding 370
8.2 Disadvantages of Adhesive Bonding 371
8.3 Theory of Adhesion 372
8.4 Joint Design 372
8.5 Adhesive Testing 377
8.6 Surface Preparation 378
8.7 Epoxy Adhesives 383
8.7.1 Two-part Room Temperature Curing Epoxy Liquid and Paste Adhesives 384
8.7.2 Epoxy Film Adhesives 385
8.8 Bonding Procedures 385
8.8.1 Prekitting of Adherends 385
8.8.2 Prefit Evaluation 386
8.8.3 Adhesive Application 387
8.8.4 Bond Line Thickness Control 388
8.8.5 Bonding 388
8.9 Sandwich Structures 390
8.9.1 Honeycomb Core 393
8.9.2 Honeycomb Processing 399
8.9.3 Balsa Wood 403
8.9.4 Foam Cores 404
8.9.5 Syntactic Core 406
8.9.6 Inspection 407
8.10 Integrally Cocured Structure 408
Summary 415
Recommended Reading 416
References 417
Chapter 9 Metal Matrix Composites 419
9.1 Discontinuously Reinforced Metal Matrix Composites 424
9.2 Stir Casting 424
9.3 Slurry Casting - Compocasting 427
9.4 Liquid Metal Infiltration (Squeeze Casting) 427
9.5 Pressure Infiltration Casting 430
9.6 Spray Deposition 431
9.7 Powder Metallurgy Methods 432
9.8 Secondary Processing of Discontinuous MMCs 434
9.9 Continuous Fiber Aluminum Metal Matrix Composites 435
9.10 Continuous Fiber Reinforced Titanium Matrix Composites 440
9.11 Secondary Fabrication of Titanium Matrix Composites 447
9.12 Fiber Metal Laminates 452
Summary 455
Recommended Reading 456
References 456
Chapter 10 Ceramic Matrix Composites 459
10.1 Reinforcements 464
10.2 Matrix Materials 467
10.3 Interfacial Coatings 470
10.4 Fiber Architectures 471
10.5 Fabrication Methods 472
10.6 Powder Processing 472
10.7 Slurry Infiltration and Consolidation 474
10.8 Polymer Infiltration and Pyrolysis (PIP) 476
10.9 Chemical Vapor Infiltration (CVI) 482
10.10 Directed Metal Oxidation (DMO) 487
10.11 Liquid Silicon Infiltration (LSI) 488
Summary 490
Recommended Reading 492
References 492
Chapter 11 Structural Assembly 495
11.1 Framing 496
11.2 Shimming 498
11.3 Hole Drilling 499
11.3.1 Manual Drilling 500
11.3.2 Power Feed Drilling 504
11.3.3 Automated Drilling 505
11.3.4 Automated Riveting Equipment 508
11.3.5 Drill Bit Geometries 509
11.3.6 Reaming 514
11.3.7 Countersinking 514
11.4 Fastener Selection and Installation 515
11.4.1 Special Considerations for Composite Joints 518
11.4.2 Solid Rivets 520
11.4.3 Pin and Collar Fasteners 523
11.4.4 Bolts and Nuts 525
11.4.5 Blind Fasteners 527
11.4.6 Fatigue Improvement and Interference Fit Fasteners 528
11.5 Sealing 533
11.6 Painting 534
Summary 535
Recommended Reading 537
References 537
Appendix A Metric Conversions 539
Appendix B A Brief Review of Materials Fundamentals 541
B.l Materials 542
B.2 Metallic Structure 543
B.3 Ceramics 555
B.4 Polymers 556
B.5 Composites 562
Recommended Reading 565
References 566
Appendix C Mechanical and Environmental Properties 567
C.l Static Strength Properties 568
C.2 Failure Modes 570
C.3 Fracture Toughness 572
C.4 Fatigue 576
C.5 Creep and Stress Rupture 581
C.6 Corrosion 582
C.7 Hydrogen Embrittlement 584
C.8 Stress Corrosion Cracking 586
C.9 High Temperature Oxidation and Corrosion 587
C.10 Polymeric Matrix Composite Degradation 587
Recommended Reading 591
References 591
Index 593