《Computer Vision:Algorithms and Applications》PDF下载

  • 购买积分:22 如何计算积分?
  • 作  者:Szeliski
  • 出 版 社:Springer;Central Book Services [Distributor]
  • 出版年份:2010
  • ISBN:9781848829343;1848829345
  • 页数:812 页
图书介绍:

1 Introduction 1

1.1 What is computer vision? 3

1.2 A brief history 10

1.3 Book overview 17

1.4 Sample syllabus 23

1.5 A note on notation 25

1.6 Additional reading 25

2 Image formation 27

2.1 Geometric primitives and transformations 29

2.1.1 Geometric primitives 29

2.1.2 2D transformations 33

2.1.3 3D transformations 36

2.1.4 3D rotations 37

2.1.5 3D to 2D projections 42

2.1.6 Lens distortions 52

2.2 Photometric image formation 54

2.2.1 Lighting 54

2.2.2 Reflectance and shading 55

2.2.3 Optics 61

2.3 The digital camera 65

2.3.1 Sampling and aliasing 69

2.3.2 Color 71

2.3.3 Compression 80

2.4 Additional reading 82

2.5 Exercises 82

3 Image processing 87

3.1 Point operators 89

3.1.1 Pixel transforms 91

3.1.2 Color transforms 92

3.1.3 Compositing and matting 92

3.1.4 Histogram equalization 94

3.1.5 Application:Tonal adjustment 97

3.2 Linear filtering 98

3.2.1 Separable liltering 102

3.2.2 Examples of linear filtering 103

3.2.3 Band-pass and steerable filters 104

3.3 More neighborhood operators 108

3.3.1 Non-linear filtering 108

3.3.2 Morphology 112

3.3.3 Distance transforms 113

3.3.4 Connected components 115

3.4 Fourier transforms 116

3.4.1 Fourier transform pairs 119

3.4.2 Two-dimensional Fourier transforms 123

3.4.3 Wiener filtering 123

3.4.4 Application:Sharpening,blur,and noise removal 126

3.5 Pyramids and wavelets 127

3.5.1 Interpolation 127

3.5.2 Decimation 130

3.5.3 Multi-resolution representations 132

3.5.4 Wavelets 136

3.5.5 Application:Image blending 140

3.6 Geometric transformations 143

3.6.1 Parametric transformations 145

3.6.2 Mesh-based warping 149

3.6.3 Application:Feature-based morphing 152

3.7 Global optimization 153

3.7.1 Regularization 154

3.7.2 Markov random fields 158

3.7.3 Application:Image restoration 169

3.8 Additional reading 169

3.9 Exercises 171

4 Feature detection and matching 181

4.1 Points and patches 183

4.1.1 Feature detectors 185

4.1.2 Feature descriptors 196

4.1.3 Feature matching 200

4.1.4 Feature tracking 207

4.1.5 Application:Performance-driven animation 209

4.2 Edges 210

4.2.1 Edge detection 210

4.2.2 Edge linking 215

4.2.3 Application:Edge editing and enhancement 219

4.3 Lines 220

4.3.1 Successive approximation 220

4.3.2 Hough transforms 221

4.3.3 Vanishing points 224

4.3.4 Application:Rectangle detection 226

4.4 Additional reading 227

4.5 Exercises 228

5 Segmentation 235

5.1 Active contours 237

5.1.1 Snakes 238

5.1.2 Dynamic snakes and CONDENSATION 243

5.1.3 Scissors 246

5.1.4 Level Sets 248

5.1.5 Application:Contour tracking and rotoscoping 249

5.2 Split and merge 250

5.2.1 Watershed 251

5.2.2 Region splitting (divisive clustering) 251

5.2.3 Region merging (agglomerative clustering) 251

5.2.4 Graph-based segmentation 252

5.2.5 Probabilistic aggregation 253

5.3 Mean shift and mode finding 254

5.3.1 K-means and mixtures of Gaussians 256

5.3.2 Mean shift 257

5.4 Normalized cuts 260

5.5 Graph cuts and energy-based methods 264

5.5.1 Application:Medical image segmentation 268

5.6 Additional reading 268

5.7 Exercises 270

6 Feature-based alignment 273

6.1 2D and 3D feature-based alignment 275

6.1.1 2D alignment using least squares 275

6.1.2 Application:Panography 277

6.1.3 Iterative algorithms 278

6.1.4 Robust least squares and RANSAC 281

6.1.5 3D alignment 283

6.2 Pose estimation 284

6.2.1 Linear algorithms 284

6.2.2 Iterative algorithms 286

6.2.3 Application:Augmented reality 287

6.3 Geometric intrinsic calibration 288

6.3.1 Calibration patterns 289

6.3.2 Vanishing points 290

6.3.3 Application:Single view metrology 292

6.3.4 Rotational motion 293

6.3.5 Radial distortion 295

6.4 Additional reading 296

6.5 Exercises 296

7 Structure from motion 303

7.1 Triangulation 305

7.2 Two-frame structure from motion 307

7.2.1 Projective (uncalibrated) reconstruction 312

7.2.2 Self-calibration 313

7.2.3 Application:View morphing 315

7.3 Factorization 315

7.3.1 Perspective and projective factorization 318

7.3.2 Application:Sparse 3D model extraction 319

7.4 Bundle adjustment 320

7.4.1 Exploiting sparsity 322

7.4.2 Application:Match move and augmented reality 324

7.4.3 Uncertainty and ambiguities 326

7.4.4 Application:Reconstruction from Internet photos 327

7.5 Constrained structure and motion 329

7.5.1 Line-based techniques 330

7.5.2 Plane-based techniques 331

7.6 Additional reading 332

7.7 Exercises 332

8 Dense motion estimation 335

8.1 Translational alignment 337

8.1.1 Hierarchical motion estimation 341

8.1.2 Fourier-based alignment 341

8.1.3 Incremental refinement 345

8.2 Parametric motion 350

8.2.1 Application:Video stabilization 354

8.2.2 Learned motion models 354

8.3 Spline-based motion 355

8.3.1 Application:Medical image registration 358

8.4 Optical flow 360

8.4.1 Multi-frame motion estimation 363

8.4.2 Application:Video denoising 364

8.4.3 Application:De-interlacing 364

8.5 Layered motion 365

8.5.1 Application:Frame interpolation 368

8.5.2 Transparent layers and reflections 368

8.6 Additional reading 370

8.7 Exercises 371

9 Image stitching 375

9.1 Motion models 378

9.1.1 Planar perspective motion 379

9.1.2 Application:Whiteboard and document scanning 379

9.1.3 Rotational panoramas 380

9.1.4 Gap closing 382

9.1.5 Application:Video summarization and compression 383

9.1.6 Cylindrical and spherical coordinates 385

9.2 Global alignment 387

9.2.1 Bundle adjustment 388

9.2.2 Parallax removal 391

9.2.3 Recognizing panoramas 392

9.2.4 Direct vs.feature-based alignment 393

9.3 Compositing 396

9.3.1 Choosing a compositing surface 396

9.3.2 Pixel selection and weighting (de-ghosting) 398

9.3.3 Application:Photomontage 403

9.3.4 Blending 403

9.4 Additional reading 406

9.5 Exercises 407

10 Computational photography 409

10.1 Photometric calibration 412

10.1.1 Radiometric response function 412

10.1.2 Noise level estimation 415

10.1.3 Vignetting 416

10.1.4 Optical blur (spatial response) estimation 416

10.2 High dynamic range imaging 419

10.2.1 Tone mapping 427

10.2.2 Application:Flash photography 434

10.3 Super-resolution and blur removal 436

10.3.1 Color image demosaicing 440

10.3.2 Application:Colorization 442

10.4 Image matting and compositing 443

10.4.1 Blue screen matting 445

10.4.2 Natural image matting 446

10.4.3 Optimization-based matting 450

10.4.4 Smoke,shadow,and flash matting 452

10.4.5 Video matting 454

10.5 Texture analysis and synthesis 455

10.5.1 Application:Hole filling and inpainting 457

10.5.2 Application:Non-photorealistic rendering 458

10.6 Additional reading 460

10.7 Exercises 461

11 Stereo correspondence 467

11.1 Epipolar geometry 471

11.1.1 Rectification 472

11.1.2 Plane sweep 474

11.2 Sparse correspondence 475

11.2.1 3D curves and profiles 476

11.3 Dense correspondence 477

11.3.1 Similarity measures 479

11.4 Local methods 480

11.4.1 Sub-pixel estimation and uncertainty 482

11.4.2 Application:Stereo-based head tracking 483

11.5 Global optimization 484

11.5.1 Dynamic programming 485

11.5.2 Segmentation-based techniques 487

11.5.3 Application:Z-keying and background replacement 489

11.6 Multi-view stereo 489

11.6.1 Volumetric and 3D surface reconstruction 492

11.6.2 Shape from silhouettes 497

11.7 Additional reading 499

11.8 Exercises 500

12 3D reconstruction 505

12.1 Shape from X 508

12.1.1 Shape from shading and photometric stereo 508

12.1.2 Shape from texture 510

12.1.3 Shape from focus 511

12.2 Active rangefinding 512

12.2.1 Range data merging 515

12.2.2 Application:Digital heritage 517

12.3 Surface representations 518

12.3.1 Surface interpolation 518

12.3.2 Surface simplification 520

12.3.3 Geometry images 520

12.4 Point-based representations 521

12.5 Volumetric representations 522

12.5.1 Implicit surfaces and level sets 522

12.6 Model-based reconstruction 523

12.6.1 Architecture 524

12.6.2 Heads and faces 526

12.6.3 Application:Facial animation 528

12.6.4 Whole body modeling and tracking 530

12.7 Recovering texture maps and albedos 534

12.7.1 Estimating BRDFs 536

12.7.2 Application:3D photography 537

12.8 Additional reading 538

12.9 Exercises 539

13 Image-based rendering 543

13.1 View interpolation 545

13.1.1 View-dependent texture maps 547

13.1.2 Application:Photo Tourism 548

13.2 Layered depth images 549

13.2.1 Impostors,sprites,and layers 549

13.3 Light fields and Lumigraphs 551

13.3.1 Unstructured Lumigraph 554

13.3.2 Surface light fields 555

13.3.3 Application:Concentric mosaics 556

13.4 Environment mattes 556

13.4.1 Higher-dimensional light fields 558

13.4.2 The modeling to rendering continuum 559

13.5 Video-based rendering 560

13.5.1 Video-based animation 560

13.5.2 Video textures 561

13.5.3 Application:Animating pictures 564

13.5.4 3D Video 564

13.5.5 Application:Video-based walkthroughs 566

13.6 Additional reading 569

13.7 Exercises 570

14 Recognition 575

14.1 Object detection 578

14.1.1 Face detection 578

14.1.2 Pedestrian detection 585

14.2 Face recognition 588

14.2.1 Eigenfaces 589

14.2.2 Active appearance and 3D shape models 596

14.2.3 Application:Personal photo collections 601

14.3 Instance recognition 602

14.3.1 Geometric alignment 603

14.3.2 Large databases 604

14.3.3 Application:Location recognition 609

14.4 Category recognition 611

14.4.1 Bag of words 612

14.4.2 Part-based models 615

14.4.3 Recognition with segmentation 620

14.4.4 Application:Intelligent photo editing 621

14.5 Context and scene understanding 625

14.5.1 Learning and large image collections 627

14.5.2 Application:Image search 630

14.6 Recognition databases and test sets 631

14.7 Additional reading 631

14.8 Exercises 637

15 Conclusion 641

A Linear algebra and numerical techniques 645

A.1 Matrix decompositions 646

A.1.1 Singular value decomposition 646

A.1.2 Eigenvalue decomposition 647

A.1.3 QR factorization 649

A.1.4 Cholesky factorization 650

A.2 Linear least squares 651

A.2.1 Total least squares 653

A.3 Non-linear least squares 654

A.4 Direct sparse matrix techniques 655

A.4.1 Variable reordering 656

A.5 Iterative techniques 656

A.5.1 Conjugate gradient 657

A.5.2 Preconditioning 659

A.5.3 Multigrid 660

B Bayesian modeling and inference 661

B.1 Estimation theory 662

B.1.1 Likelihood for multivariate Gaussian noise 663

B.2 Maximum likelihood estimation and least squares 665

B.3 Robust statistics 666

B.4 Prior models and Bayesian inference 667

B.5 Markov random fields 668

B.5.1 Gradient descent and simulated annealing 670

B.5.2 Dynamic programming 670

B.5.3 Belief propagation 672

B.5.4 Graph cuts 674

B.5.5 Linear programming 676

B.6 Uncertainty estimation (error analysis) 678

C Supplementary material 679

C.1 Data sets 680

C.2 Software 682

C.3 Slides and lectures 689

C.4 Bibliography 690

References 691

Index 793

1 Introduction 1

2 Image formation 27

3 Image processing 87

4 Feature detection and matching 181

5 Segmentation 235

6 Feature-based alignment 273

7 Structure from motion 303

8 Dense motion estimation 335

9 Image stitching 375

10 Computational photography 409

11 Stereo correspondence 467

12 3D reconstruction 505

13 Image-based rendering 543

14 Recognition 575